Compare commits
4 Commits
fc9f76a01b
...
blueberry
| Author | SHA1 | Date | |
|---|---|---|---|
| 3b85d58a10 | |||
| d78b82c9e3 | |||
| cf033c4b4f | |||
| 32c8436713 |
94
functional_tests/sine.py
Normal file
94
functional_tests/sine.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import subprocess
|
||||
|
||||
import numpy as np
|
||||
from pojagi_dsp.channel.generator.sine import SineWave
|
||||
import sys
|
||||
import datetime
|
||||
from itertools import islice
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
from scipy.io import wavfile
|
||||
|
||||
from pojagi_dsp.channel import Constantly
|
||||
from pojagi_dsp.channel.filter.envelope import Envelope
|
||||
|
||||
|
||||
SRATE = 44100
|
||||
|
||||
|
||||
def test_sawtooth(
|
||||
fundamental: float,
|
||||
npartials: int = 10,
|
||||
seconds: float = 1.0,
|
||||
):
|
||||
sine = Constantly(0, srate=SRATE)
|
||||
|
||||
for idx in range(1, npartials):
|
||||
freq = fundamental * idx
|
||||
amp = 1 / idx
|
||||
|
||||
partial = SineWave(freq, synchronize=True)
|
||||
partial *= amp
|
||||
sine += partial
|
||||
|
||||
sine |= lambda g: (x / 3 for x in g)
|
||||
sine |= Envelope(
|
||||
[
|
||||
(0, 0.0),
|
||||
(int(SRATE * seconds / 2), 1.0),
|
||||
(SRATE * seconds, 0.0),
|
||||
]
|
||||
)
|
||||
|
||||
values = []
|
||||
for y in sine.of_duration(datetime.timedelta(seconds=seconds)):
|
||||
values.append(y)
|
||||
|
||||
return values
|
||||
|
||||
|
||||
def test_pitchbend(
|
||||
from_pitch: float,
|
||||
to_pitch: float,
|
||||
seconds: float = 1.0,
|
||||
):
|
||||
sine = SineWave(hz=from_pitch, srate=SRATE)
|
||||
|
||||
sig = sine | Envelope(
|
||||
[
|
||||
(0, 0.0),
|
||||
(int(SRATE * seconds / 2), 1.0),
|
||||
(SRATE * seconds, 0.0),
|
||||
]
|
||||
)
|
||||
|
||||
lfo = (SineWave(1/seconds, srate=SRATE) * 30)
|
||||
lfo += (SineWave(seconds) * 20)
|
||||
lfo = lfo.stream()
|
||||
|
||||
values = []
|
||||
for idx in range(int(seconds * SRATE)):
|
||||
values.append(next(sig))
|
||||
# if idx % 5000 == 0:
|
||||
sine.hz = from_pitch + next(lfo)
|
||||
# print(from_pitch + next(lfo))
|
||||
# import time
|
||||
# time.sleep(0.001)
|
||||
|
||||
return values
|
||||
|
||||
|
||||
def do_test(values: list[float]):
|
||||
plt.plot(range(len(values)), values)
|
||||
plt.show()
|
||||
|
||||
audio = np.array(values, dtype=np.float32)
|
||||
wavfile.write("/tmp/output.wav", SRATE, audio)
|
||||
|
||||
with subprocess.Popen(["mplayer", "/tmp/output.wav"]) as p:
|
||||
p.wait()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# do_test(test_sawtooth(55.0))
|
||||
do_test(test_pitchbend(110.0, 110.0, seconds=10))
|
||||
@@ -6,23 +6,15 @@ build-backend = "setuptools.build_meta"
|
||||
name = "pojagi-dsp"
|
||||
description = "DSP tools for load testing."
|
||||
urls = { "gitlab" = "https://gitlab.pojagi.org/tjb1982/dsp" }
|
||||
authors = [
|
||||
{ name = "Tom Brennan", email = "tjb1982@gmail.com" },
|
||||
]
|
||||
authors = [{ name = "Tom Brennan", email = "tjb1982@gmail.com" }]
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.8"
|
||||
classifiers = []
|
||||
dependencies = [
|
||||
"pydantic==1.10.2",
|
||||
"scipy==1.8.1",
|
||||
|
||||
# These should be included in the above requirement
|
||||
# "marshmallow>=3.3.0",
|
||||
# "marshmallow_dataclass>=7.2.1",
|
||||
# "marshmallow_oneofschema>=2.0.1",
|
||||
# "PyYAML>=5.3.1",
|
||||
"pydantic~=1.10.2",
|
||||
"scipy~=1.16.2",
|
||||
]
|
||||
|
||||
optional-dependencies = { test = ["pytest"] }
|
||||
optional-dependencies = { test = ["pytest"], dev = ["matplotlib", "scipy"] }
|
||||
version = "0.0.0.dev0"
|
||||
# dynamic = ["version"]
|
||||
|
||||
@@ -1,337 +1 @@
|
||||
import abc
|
||||
import copy
|
||||
import datetime
|
||||
import inspect
|
||||
from itertools import islice
|
||||
import logging
|
||||
import math
|
||||
import operator
|
||||
from collections.abc import Iterable
|
||||
from functools import reduce
|
||||
import types
|
||||
from typing import (Any, Callable, Generic, Iterator, Optional, Type, TypeVar,
|
||||
Union)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
class IllegalStateError(ValueError):
|
||||
...
|
||||
|
||||
|
||||
def coerce_channels(x: Any) -> Iterator["ASignal"]:
|
||||
if isinstance(x, ASignal):
|
||||
yield x
|
||||
else:
|
||||
if callable(x):
|
||||
if isinstance(x, Type):
|
||||
yield x()
|
||||
else:
|
||||
yield SignalFunction(x)
|
||||
elif isinstance(x, Iterable): # and not isinstance(x, str):
|
||||
for it in (coerce_channels(y) for y in x):
|
||||
for channel in it:
|
||||
yield channel
|
||||
else:
|
||||
yield Constantly(x)
|
||||
|
||||
|
||||
class ASignalMeta(abc.ABCMeta):
|
||||
def __or__(self, other: Any) -> "Filter":
|
||||
"""
|
||||
Allows `|` composition starting from an uninitialized class.
|
||||
See doc for `__or__` below in `ASignal`.
|
||||
"""
|
||||
return self() | coerce_channels(other)
|
||||
|
||||
def __radd__(self, other): return self() + other
|
||||
def __add__(self, other): return self() + other
|
||||
def __rmul__(self, other): return self() * other
|
||||
def __mul__(self, other): return self() * other
|
||||
|
||||
|
||||
class ASignal(Generic[T], metaclass=ASignalMeta):
|
||||
def __init__(self, srate: Optional[float] = None):
|
||||
self._srate = srate
|
||||
self._cursor: Optional[Iterator[T]] = None
|
||||
|
||||
@property
|
||||
def srate(self):
|
||||
if self._srate is None:
|
||||
raise IllegalStateError(
|
||||
f"{self.__class__}: `srate` is None."
|
||||
)
|
||||
return self._srate
|
||||
|
||||
@srate.setter
|
||||
def srate(self, val: float): self._srate = val
|
||||
|
||||
def __iter__(self):
|
||||
self._cursor = self.samples()
|
||||
return self
|
||||
|
||||
def __next__(self): return next(self.cursor)
|
||||
|
||||
@abc.abstractmethod
|
||||
def samples(self) -> Iterator[T]: ...
|
||||
|
||||
@property
|
||||
def cursor(self):
|
||||
"""
|
||||
An `Iterator` representing the current pipeline in progress.
|
||||
"""
|
||||
if self._cursor is None:
|
||||
# this can only happen once
|
||||
self._cursor = self.samples()
|
||||
return self._cursor
|
||||
|
||||
def __getstate__(self):
|
||||
"""
|
||||
`_cursor` is a generator, and generators aren't picklable.
|
||||
"""
|
||||
state = self.__dict__.copy()
|
||||
if state.get("_cursor"):
|
||||
del state["_cursor"]
|
||||
return state
|
||||
|
||||
def stream(self):
|
||||
while True:
|
||||
try:
|
||||
yield next(self.cursor)
|
||||
except StopIteration:
|
||||
self = iter(self)
|
||||
|
||||
def of_duration(self, duration: datetime.timedelta):
|
||||
"""
|
||||
Returns an `Iterator` of samples for a particular duration expressed
|
||||
as a `datetime.timedelta`
|
||||
:param:`duration` - `datetime.timedelta` representing the duration
|
||||
"""
|
||||
return islice(
|
||||
self.stream(),
|
||||
0,
|
||||
math.floor(self.srate * duration.total_seconds()),
|
||||
)
|
||||
|
||||
def __or__(
|
||||
left,
|
||||
right: Union["Filter", Callable, Iterable],
|
||||
) -> "Filter":
|
||||
"""
|
||||
Allows composition of filter pipelines with `|` operator.
|
||||
|
||||
e.g.,
|
||||
```
|
||||
myFooGenerator
|
||||
| BarFilter
|
||||
| baz_filter_func
|
||||
| (lambda reader: (x for x in reader))
|
||||
```
|
||||
"""
|
||||
if isinstance(right, SignalFunction):
|
||||
return left | FilterFunction(fn=right._fn, name=right.Function)
|
||||
|
||||
if not isinstance(right, ASignal):
|
||||
return reduce(operator.or_, (left, *coerce_channels(right)))
|
||||
|
||||
if not isinstance(right, Filter):
|
||||
raise ValueError(
|
||||
f"Right side must be a `{Filter.__name__}`; "
|
||||
f"received: {type(right)}",
|
||||
)
|
||||
|
||||
filter: Filter = right
|
||||
while getattr(filter, "_reader", None) is not None:
|
||||
# Assuming this is a filter pipeline, we want the last node's
|
||||
# reader to be whatever's on the left side of this operation.
|
||||
filter = filter.reader
|
||||
|
||||
if hasattr(filter, "_reader"):
|
||||
# We hit the "bottom" and found a filter.
|
||||
filter.reader = left
|
||||
else:
|
||||
# We hit the "bottom" and found a non-filter/generator.
|
||||
raise ValueError(
|
||||
f"{right.__class__.__name__}: filter pipeline already has a "
|
||||
"generator."
|
||||
)
|
||||
|
||||
# Will often be `None` unless `left` is a generator.
|
||||
right.srate = left._srate
|
||||
|
||||
return right
|
||||
|
||||
def __radd__(right, left): return right.__add__(left)
|
||||
def __add__(left, right): return left._operator_impl(operator.add, right)
|
||||
def __rmul__(right, left): return right.__mul__(left)
|
||||
def __mul__(left, right): return left._operator_impl(operator.mul, right)
|
||||
# FIXME: other operators? Also, shouldn't `*` mean convolve instead?
|
||||
|
||||
def _operator_impl(left, operator: Callable[..., T], right: Any):
|
||||
channels = list(coerce_channels(right))
|
||||
for channel in channels:
|
||||
if channel._srate is None:
|
||||
channel.srate = left._srate
|
||||
return Reduce(operator, left, *channels, srate=left._srate)
|
||||
|
||||
def __repr__(self):
|
||||
members = {}
|
||||
for k in [k for k in dir(self)
|
||||
if not k.startswith("_")
|
||||
and not k in {"stream", "reader", "cursor", "wave", }]:
|
||||
try:
|
||||
v = getattr(self, k)
|
||||
if not inspect.isroutine(v):
|
||||
members[k] = v
|
||||
except IllegalStateError as e:
|
||||
members[k] = None
|
||||
|
||||
return (
|
||||
f"{self.__class__.__name__}"
|
||||
f"""({
|
||||
f", ".join(
|
||||
f"{k}={v}"
|
||||
for k, v in members.items()
|
||||
)
|
||||
})"""
|
||||
)
|
||||
|
||||
|
||||
S = TypeVar("S", bound=ASignal)
|
||||
|
||||
|
||||
class Reduce(ASignal, Generic[S, T]):
|
||||
def __init__(
|
||||
self,
|
||||
# FIXME: typing https://stackoverflow.com/a/67814270
|
||||
fn: Callable[..., T],
|
||||
*streams: S,
|
||||
srate: Optional[float] = None,
|
||||
stateful=False,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self._fn = fn
|
||||
self.fn = fn.__name__
|
||||
self.streams = []
|
||||
for stream in streams:
|
||||
if stateful:
|
||||
self.streams.append(stream)
|
||||
continue
|
||||
|
||||
stream_ = (
|
||||
copy.deepcopy(stream)
|
||||
if not isinstance(stream, types.GeneratorType)
|
||||
else stream
|
||||
)
|
||||
stream_.srate = srate
|
||||
self.streams.append(stream_)
|
||||
|
||||
@property
|
||||
def srate(self): return ASignal.srate.fget(self)
|
||||
|
||||
@srate.setter
|
||||
def srate(self, val: float):
|
||||
ASignal.srate.fset(self, val)
|
||||
for stream in self.streams:
|
||||
if isinstance(stream, ASignal):
|
||||
stream.srate = val
|
||||
|
||||
def samples(self): return (
|
||||
reduce(self._fn, args)
|
||||
for args in zip(*self.streams)
|
||||
)
|
||||
|
||||
|
||||
class Filter(ASignal, Generic[S]):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reader: Optional[S] = None,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self.reader: Optional[S] = reader
|
||||
|
||||
@property
|
||||
def reader(self) -> S:
|
||||
"""
|
||||
The input stream this filter reads.
|
||||
"""
|
||||
if not self._reader:
|
||||
raise IllegalStateError(
|
||||
f"{self.__class__}: `reader` is None."
|
||||
)
|
||||
return self._reader
|
||||
|
||||
@reader.setter
|
||||
def reader(self, val: S):
|
||||
self._reader = val
|
||||
if val is not None and self._srate is None:
|
||||
self.srate = val._srate
|
||||
|
||||
@property
|
||||
def srate(self): return ASignal.srate.fget(self)
|
||||
|
||||
@srate.setter
|
||||
def srate(self, val: float):
|
||||
ASignal.srate.fset(self, val)
|
||||
child = getattr(self, "_reader", None)
|
||||
previous_srate = val
|
||||
while child is not None:
|
||||
# Since `srate` is optional at initialization, but required in
|
||||
# general, we make our best attempt to normalize it for the
|
||||
# filter pipeline, which should be consistent for most
|
||||
# applications, by applying it to all children.
|
||||
if child._srate is None:
|
||||
child.srate = previous_srate
|
||||
child: Optional[ASignal] = getattr(child, "_reader", None)
|
||||
if isinstance(child, ASignal) and child._srate is not None:
|
||||
previous_srate = child._srate
|
||||
|
||||
def samples(self) -> Iterator[T]: return self.reader.samples()
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self._reader} | {super().__repr__()}"
|
||||
)
|
||||
|
||||
|
||||
class FilterFunction(Filter, Generic[T, S]):
|
||||
def __init__(
|
||||
self,
|
||||
fn: Callable[[S], Iterator[T]],
|
||||
name: Optional[str] = None,
|
||||
reader: Optional[S] = None,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(reader, srate)
|
||||
self._fn = fn
|
||||
self.Function = name if name else fn.__name__
|
||||
|
||||
def samples(self): return self._fn(self.reader)
|
||||
|
||||
|
||||
class SignalFunction(ASignal, Generic[T]):
|
||||
def __init__(
|
||||
self,
|
||||
fn: Callable[[int], Iterator[T]],
|
||||
name: Optional[str] = None,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self._fn = fn
|
||||
self.Function = name if name else fn.__name__
|
||||
|
||||
def samples(self) -> Iterator[T]: return self._fn(self.srate)
|
||||
|
||||
|
||||
class Constantly(ASignal, Generic[T]):
|
||||
def __init__(self, constant: T, srate: float = 0.0):
|
||||
super().__init__(srate)
|
||||
self.constant = constant
|
||||
|
||||
def samples(self) -> Iterator[T]:
|
||||
while True:
|
||||
yield self.constant
|
||||
from .signal import *
|
||||
|
||||
@@ -68,13 +68,13 @@ class Segments:
|
||||
class AECGChannel(ASignal[Number]):
|
||||
|
||||
@property
|
||||
@abc.abstractproperty
|
||||
@abc.abstractmethod
|
||||
def heart_rate(self) -> float:
|
||||
"""Frequency of impulses/waves in bpm."""
|
||||
...
|
||||
|
||||
@property
|
||||
@abc.abstractproperty
|
||||
@abc.abstractmethod
|
||||
def wavelength(self) -> int:
|
||||
"""
|
||||
The number of samples in a complete impulse/wave cycle.
|
||||
@@ -83,16 +83,3 @@ class AECGChannel(ASignal[Number]):
|
||||
heart rate converted from bpm to Hz.
|
||||
"""
|
||||
...
|
||||
|
||||
@property
|
||||
@abc.abstractproperty
|
||||
def segments(self) -> Segments:
|
||||
"""The analytical segments of the impulse/wave."""
|
||||
...
|
||||
|
||||
@property
|
||||
def wave(self) -> Iterator[Number]:
|
||||
"""
|
||||
Returns an iterator over a single ECG impulse/wave.
|
||||
"""
|
||||
return itertools.islice(self, 0, self.wavelength)
|
||||
|
||||
@@ -1,266 +1,4 @@
|
||||
import dataclasses
|
||||
import logging
|
||||
import math
|
||||
from numbers import Number
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
from scipy.interpolate import CubicSpline
|
||||
|
||||
from pojagi_dsp.channel.ecg import Segments
|
||||
from pojagi_dsp.channel.ecg.generator import AECGSynthesizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ECGWaveTable:
|
||||
"""
|
||||
This type of wavetable is designed around the P and R. By
|
||||
convention, R will always be equal to 1, and the baseline (P) will always
|
||||
be 0. (That doesn't mean, however, that the other values can't cross these
|
||||
boundaries. E.g., Q and S are often negative.)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Number],
|
||||
segments: Segments,
|
||||
bottom: Optional[Number] = None,
|
||||
top: Optional[Number] = None,
|
||||
table_length: int = 1 << 11, # 2048
|
||||
):
|
||||
"""
|
||||
The table size is increased to `table_length` upon initialization
|
||||
using linear interpolation (via `numpy.interp`).
|
||||
"""
|
||||
|
||||
if len(data) == table_length:
|
||||
self.data = np.array(data)
|
||||
else:
|
||||
# We generate a larger table for use with linear interpolation,
|
||||
# trading time (CPU) for memory (table size).
|
||||
#
|
||||
# Here we use cubic spline interpolation instead of linear for
|
||||
# wavetable construction, since it usually only happens once at
|
||||
# startup, and should provide a much better quality table from
|
||||
# limited data, making it possible to work with small, manually
|
||||
# composed tables that we JIT convert to the larger table.
|
||||
### FIXME: use the sinc function instead:
|
||||
### f(x) = sin(x)/x where x =/= 0 and f(x) = 1 if x = 0
|
||||
### you have to apply this scaled to each sample in the table and
|
||||
### then add all of the resulting signals together.
|
||||
### I think this is the same as summing the dft of each impulse
|
||||
### as if the impulse is a member of a larger table.
|
||||
cs = CubicSpline(
|
||||
range(len(data)),
|
||||
data,
|
||||
bc_type="natural",
|
||||
)
|
||||
self.data = np.array([
|
||||
cs(x) for x in np.linspace(0, len(data), table_length)
|
||||
])
|
||||
|
||||
self.segments = Segments(
|
||||
**{
|
||||
k: int(v / (len(data) / table_length)) if v else v
|
||||
for k, v in (
|
||||
(f.name, getattr(segments, f.name))
|
||||
for f in dataclasses.fields(segments)
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
# NOTE: these are not the data min/max, but the normal min/max, either
|
||||
# provided as kwargs, or derived from P and R segment starts, by
|
||||
# convention.
|
||||
bottom = bottom if bottom is not None else data[segments.P]
|
||||
top = top if top is not None else data[segments.R]
|
||||
|
||||
if not (0 == bottom and 1 == top):
|
||||
# Normalize between 0 and 1:
|
||||
self.data = (self.data - bottom) / (top - bottom)
|
||||
|
||||
def __getitem__(self, k): return self.data[k]
|
||||
|
||||
def __len__(self): return len(self.data) # O(1)
|
||||
|
||||
def linear_interpolation(
|
||||
self,
|
||||
index: float,
|
||||
floor: Optional[int] = None,
|
||||
ceiling: Optional[int] = None,
|
||||
) -> float:
|
||||
"""
|
||||
Handles the situation where the floor would produce duplicate values,
|
||||
which makes the waveform chunky with aliasing; instead, we obtain a
|
||||
value weighted between the floor/ceiling, trading time (CPU) for
|
||||
memory (table size).
|
||||
"""
|
||||
dl = len(self.data)
|
||||
floor = floor if floor is not None else math.floor(index) % dl
|
||||
ceiling = ceiling if ceiling is not None else (floor + 1) % dl
|
||||
|
||||
# e.g., a. 124.75 - 124 == 0.75
|
||||
# b. 123 - 123 == 0 (no weight goes to ceiling)
|
||||
ceiling_weight = index - floor
|
||||
# e.g., a. 1 - 0.75 == 0.25
|
||||
# b. 1 - 0 == 1 (all weight goes to floor)
|
||||
floor_weight = 1 - ceiling_weight
|
||||
|
||||
return (
|
||||
self[floor] * floor_weight + self[ceiling] * ceiling_weight
|
||||
)
|
||||
|
||||
def merge(
|
||||
self,
|
||||
other: "ECGWaveTable",
|
||||
weight: float,
|
||||
):
|
||||
self_weight = 1 - weight
|
||||
return ECGWaveTable(
|
||||
data=(self.data * self_weight + other.data * weight),
|
||||
segments=self.segments.merge(other.segments, weight),
|
||||
top=1,
|
||||
bottom=0,
|
||||
)
|
||||
|
||||
|
||||
class ECGWaveTableSynthesizer(AECGSynthesizer):
|
||||
def __init__(
|
||||
self, /,
|
||||
tables: Dict[Tuple[float, float], ECGWaveTable],
|
||||
heart_rate: int,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
self.inc: float = 0.0
|
||||
self.tables = tables
|
||||
super().__init__(heart_rate, srate)
|
||||
|
||||
self._segments: Segments = None
|
||||
|
||||
def samples(self):
|
||||
index: float = 0.0
|
||||
inc: float = None
|
||||
n: int = 0
|
||||
|
||||
while True:
|
||||
if n > 0:
|
||||
floor = math.floor(index)
|
||||
else:
|
||||
# `n` cannot be negative
|
||||
floor = 0
|
||||
index = 0.0
|
||||
|
||||
# NOTE: it's important that this `n` calculation occur before
|
||||
# `yield` because the `heart_rate` (and, hence, the `wavelength`)
|
||||
# may change in the meantime, which affects resetting to zero with
|
||||
# the modulo operation below.
|
||||
n = (n + 1) % self.wavelength
|
||||
|
||||
yield self.table.linear_interpolation(index, floor=floor)
|
||||
|
||||
if (self.heart_rate < 60
|
||||
and
|
||||
self.table.segments.T_P <= floor < self.table.segments.P):
|
||||
inc = self.brady_inc
|
||||
elif (self.heart_rate > 60
|
||||
and
|
||||
self.table.segments.T <= floor < self.table.segments.Q):
|
||||
# FIXME: this is probably only good below a certain
|
||||
# `heart_rate` threshold.
|
||||
inc = self.tachy_inc
|
||||
else:
|
||||
inc = None
|
||||
|
||||
index += inc if inc is not None else self.inc
|
||||
index %= len(self.table)
|
||||
|
||||
def _recalibrate(self, heart_rate: float) -> None:
|
||||
table_matches = {
|
||||
k: v
|
||||
for k, v in self.tables.items()
|
||||
if k[0] <= heart_rate < k[1]
|
||||
}
|
||||
|
||||
if not table_matches:
|
||||
raise ValueError(
|
||||
f"No table found corresponding to heart rate: {heart_rate}."
|
||||
)
|
||||
|
||||
# Since we may have more than two tables that match, we loop
|
||||
# through all the matches, applying them in key order.
|
||||
keys = iter(sorted(table_matches))
|
||||
key = next(keys)
|
||||
table = table_matches[key]
|
||||
|
||||
for next_key in keys:
|
||||
next_table = table_matches[next_key]
|
||||
|
||||
if next_key[1] < key[1]:
|
||||
# `next_key` is fully contained within `key`
|
||||
floor, ceiling = next_key
|
||||
next_weight = (heart_rate - floor) / (ceiling - floor)
|
||||
weight = 1 - next_weight
|
||||
|
||||
if (heart_rate - floor) > ((ceiling - floor) / 2):
|
||||
# Weights form an "X" shape; i.e., crossfade to 50%
|
||||
# and back.
|
||||
weight, next_weight = next_weight, weight
|
||||
else:
|
||||
floor = next_key[0] # i.e., the bottom of the top
|
||||
ceiling = key[1] # i.e., the top of the bottom
|
||||
next_weight = (heart_rate - floor) / (ceiling - floor)
|
||||
|
||||
table = table.merge(next_table, next_weight)
|
||||
key = next_key
|
||||
|
||||
self.table = table
|
||||
|
||||
# ECG Tables are designed for 1Hz, and as a default, we don't want to
|
||||
# stretch anything; hence, no reference to `self.heart_rate` here,
|
||||
# instead constant 60:
|
||||
self.inc = len(self.table) / (self.srate * (60 / 60))
|
||||
|
||||
# Stretch only the T_P segment to compensate, rather than
|
||||
# stretching the whole wave.
|
||||
table_segment_length = \
|
||||
self.table.segments.P - self.table.segments.T_P
|
||||
self.brady_inc = self.stretch_inc(table_segment_length)
|
||||
|
||||
# Preserve QRS-J-point; compress Jp-Q to compensate.
|
||||
table_segment_length = \
|
||||
self.table.segments.Q - self.table.segments.S_T
|
||||
self.tachy_inc = self.stretch_inc(table_segment_length)
|
||||
|
||||
@AECGSynthesizer.heart_rate.setter
|
||||
def heart_rate(self, val):
|
||||
AECGSynthesizer.heart_rate.fset(self, val)
|
||||
self._recalibrate(heart_rate=val)
|
||||
|
||||
def stretch_inc(self, table_segment_length):
|
||||
# Get the missing samples by subtracting the number of samples
|
||||
# contributed by the 1Hz table default, minus the segment we
|
||||
# want to stretch.
|
||||
tmp_wavelength = self.wavelength - \
|
||||
(len(self.table) - table_segment_length) / self.inc
|
||||
|
||||
return table_segment_length / tmp_wavelength
|
||||
|
||||
@property
|
||||
def segments(self):
|
||||
if self._segments:
|
||||
return self._segments
|
||||
|
||||
table_length = len(self.table)
|
||||
table_segments = self.table.segments
|
||||
# FIXME: this is a lie since we stretch T_P, etc.
|
||||
self._segments = Segments(
|
||||
**{
|
||||
k: math.floor(v * self.srate / table_length) if v else v
|
||||
for k, v in [
|
||||
(f.name, getattr(table_segments, f.name))
|
||||
for f in dataclasses.fields(table_segments)
|
||||
]
|
||||
}
|
||||
)
|
||||
return self._segments
|
||||
from pojagi_dsp.channel.ecg.generator.wavetable.synthesizer import (
|
||||
ECGWaveTableSynthesizer,
|
||||
)
|
||||
from pojagi_dsp.channel.ecg.generator.wavetable.wavetable import ECGWaveTable
|
||||
|
||||
@@ -1,83 +1,204 @@
|
||||
import math
|
||||
import numpy as np
|
||||
from numbers import Number
|
||||
import random
|
||||
from typing import List
|
||||
from pojagi_dsp.channel.ecg import Segments
|
||||
from pojagi_dsp.channel.ecg.generator.wavetable import ECGWaveTable
|
||||
|
||||
# NOTE: larger table required for avoiding aliasing at different srates than 125Hz
|
||||
sinus_data = [
|
||||
# R-S: 0
|
||||
2000, 1822, 374,
|
||||
|
||||
# S-Jp: 3
|
||||
-474, -271, -28, 18, 66,
|
||||
|
||||
# Jp-T: 9
|
||||
63, 73, 91, 101, 101, 101, 116, 124,
|
||||
124,
|
||||
|
||||
# T: 17
|
||||
141, 171, 186, 196, 229, 265, 297, 327,
|
||||
363, 406, 446, 475, 493, 508, 526, 533,
|
||||
518, 475, 403, 327, 272, 222, 174, 138,
|
||||
109, 88, 73, 66, 69, 69, 66, 73,
|
||||
81, 76, 73, 76, 76, 66, 58, 58,
|
||||
63, 63, 41, 26, 26, 18, 8, 8,
|
||||
8,
|
||||
|
||||
# U: 66 -- not found
|
||||
|
||||
# T-P: 66
|
||||
2, 3, 2, 2, 2, -1, 2, 2,
|
||||
2, -1, 0, -1, -1, 3, 2, 1,
|
||||
3, 2, 1, 0, 1,
|
||||
|
||||
# P: 87
|
||||
0, 3, 11, 11, 0, 8, 18, 18,
|
||||
18, 15, 8, 18, 26, 26, 26, 8,
|
||||
32, 61, 116, 164, 182, 159, 131, 116,
|
||||
116, 109, 91, 73, 58, 55, 58, 63,
|
||||
69,
|
||||
|
||||
# P-R: 120
|
||||
48, -14,
|
||||
|
||||
# Q-R: 122
|
||||
-40, 131, 931,
|
||||
] # len == 125
|
||||
sinus_data = np.array(
|
||||
[
|
||||
# R-S: 0
|
||||
2000,
|
||||
1822,
|
||||
374,
|
||||
# S-Jp: 3
|
||||
-474,
|
||||
-271,
|
||||
-28,
|
||||
18,
|
||||
66,
|
||||
# Jp-T: 9
|
||||
63,
|
||||
73,
|
||||
91,
|
||||
101,
|
||||
101,
|
||||
101,
|
||||
116,
|
||||
124,
|
||||
124,
|
||||
# T: 17
|
||||
141,
|
||||
171,
|
||||
186,
|
||||
196,
|
||||
229,
|
||||
265,
|
||||
297,
|
||||
327,
|
||||
363,
|
||||
406,
|
||||
446,
|
||||
475,
|
||||
493,
|
||||
508,
|
||||
526,
|
||||
533,
|
||||
518,
|
||||
475,
|
||||
403,
|
||||
327,
|
||||
272,
|
||||
222,
|
||||
174,
|
||||
138,
|
||||
109,
|
||||
88,
|
||||
73,
|
||||
66,
|
||||
69,
|
||||
69,
|
||||
66,
|
||||
73,
|
||||
81,
|
||||
76,
|
||||
73,
|
||||
76,
|
||||
76,
|
||||
66,
|
||||
58,
|
||||
58,
|
||||
63,
|
||||
63,
|
||||
41,
|
||||
26,
|
||||
26,
|
||||
18,
|
||||
8,
|
||||
8,
|
||||
8,
|
||||
# U: 66 -- not found
|
||||
# T-P: 66
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
-1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
-1,
|
||||
0,
|
||||
-1,
|
||||
-1,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
# P: 87
|
||||
0,
|
||||
3,
|
||||
11,
|
||||
11,
|
||||
0,
|
||||
8,
|
||||
18,
|
||||
18,
|
||||
18,
|
||||
15,
|
||||
8,
|
||||
18,
|
||||
26,
|
||||
26,
|
||||
26,
|
||||
8,
|
||||
32,
|
||||
61,
|
||||
116,
|
||||
164,
|
||||
182,
|
||||
159,
|
||||
131,
|
||||
116,
|
||||
116,
|
||||
109,
|
||||
91,
|
||||
73,
|
||||
58,
|
||||
55,
|
||||
58,
|
||||
63,
|
||||
69,
|
||||
# P-R: 120
|
||||
48,
|
||||
-14,
|
||||
# Q-R: 122
|
||||
-40,
|
||||
131,
|
||||
931,
|
||||
]
|
||||
) # len == 125
|
||||
|
||||
|
||||
tpr = np.arange(-math.floor(120-18)/2, math.ceil(120-18)/2)
|
||||
tpr_curve: np.ndarray = (tpr ** 2 * -0.1)
|
||||
tpr_curve = (tpr_curve - tpr_curve[0]) + 141
|
||||
def parabolic_curve(t_idx, pr_idx):
|
||||
"""Calculates a smooth, physiologically mimetic curve for the
|
||||
T-P-R segment of the ECG waveform.
|
||||
"""
|
||||
# Compute the difference in indices to determine the segment length
|
||||
t_pr_idx_diff = pr_idx - t_idx
|
||||
|
||||
tachycardia = np.array([ # 58-107 flat
|
||||
# R-S: 0
|
||||
2000, 1822, 374,
|
||||
|
||||
# S-Jp: 3
|
||||
-474, -271, -28, 18, 66,
|
||||
|
||||
# Jp-T: 9
|
||||
63, 73, 91, 101, 101, 101, 116, 124,
|
||||
124,
|
||||
# Generate a symmetric range of values centered around zero for the segment
|
||||
t_pr = np.arange(-math.floor(t_pr_idx_diff / 2), math.ceil(t_pr_idx_diff / 2))
|
||||
|
||||
*tpr_curve,
|
||||
|
||||
# P-R: 119
|
||||
124, 48, -14,
|
||||
# Apply a parabolic transformation to create a smooth transition
|
||||
t_pr_curve: np.ndarray = t_pr**2 * -0.25
|
||||
|
||||
# Q-R: 122
|
||||
*(np.array([-40, 131, 931]) * 0.25),
|
||||
|
||||
]) * (2/3) # len == 125
|
||||
# Normalize the curve so it starts at the T wave amplitude (141)
|
||||
return t_pr_curve - t_pr_curve[0]
|
||||
|
||||
|
||||
def SinusWaveTable(): return ECGWaveTable(
|
||||
data=sinus_data,
|
||||
segments=Segments(
|
||||
tachycardia = np.array(
|
||||
[ # 58-107 flat
|
||||
# R-S: 0
|
||||
2000,
|
||||
1822,
|
||||
374,
|
||||
# S-Jp: 3
|
||||
-474,
|
||||
-271,
|
||||
-28,
|
||||
18,
|
||||
66,
|
||||
# Jp-T: 8
|
||||
63,
|
||||
73,
|
||||
91,
|
||||
101,
|
||||
101,
|
||||
101,
|
||||
116,
|
||||
124,
|
||||
124,
|
||||
# T: 17
|
||||
*parabolic_curve(17, 119) + 141,
|
||||
# P-R: 120
|
||||
124,
|
||||
48,
|
||||
-14,
|
||||
# Q-R: 122
|
||||
-40,
|
||||
731,
|
||||
1231,
|
||||
]
|
||||
) # len == 125
|
||||
|
||||
|
||||
def SinusWaveTable():
|
||||
segments = Segments(
|
||||
S=3,
|
||||
S_T=9,
|
||||
T=17,
|
||||
@@ -85,20 +206,77 @@ def SinusWaveTable(): return ECGWaveTable(
|
||||
P=87,
|
||||
P_R=120,
|
||||
Q=122,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
def TachycardiaWaveTable(): return ECGWaveTable(
|
||||
data=tachycardia,
|
||||
segments=Segments(
|
||||
return ECGWaveTable(
|
||||
data=sinus_data,
|
||||
segments=segments,
|
||||
)
|
||||
|
||||
|
||||
def TachycardiaWaveTable():
|
||||
segments = Segments(
|
||||
S=3,
|
||||
S_T=9,
|
||||
S_T=8,
|
||||
T=17,
|
||||
T_P=66,
|
||||
P=87,
|
||||
P_R=119,
|
||||
Q=122,
|
||||
),
|
||||
top=2000,
|
||||
bottom=0,
|
||||
)
|
||||
)
|
||||
|
||||
return ECGWaveTable(
|
||||
data=tachycardia,
|
||||
segments=segments,
|
||||
# Tachy is weaker than sinus, so we inflate the range here by 3/2,
|
||||
# which effectively attenuates the signal by 1/3 (i.e., it is 2/3 of
|
||||
# the amplitude of the data definition).
|
||||
top=2000 * (3 / 2),
|
||||
bottom=0,
|
||||
)
|
||||
|
||||
|
||||
def FastTachycardiaWaveTable():
|
||||
segments = Segments(
|
||||
S=3,
|
||||
S_T=8,
|
||||
T=17,
|
||||
T_P=66,
|
||||
P=87,
|
||||
P_R=119,
|
||||
Q=122,
|
||||
)
|
||||
|
||||
return ECGWaveTable(
|
||||
data=np.arange(-50, 51) ** 11 / 1e19,
|
||||
segments=segments,
|
||||
tachy_compress=("R", "R"),
|
||||
top=2,
|
||||
bottom=0,
|
||||
)
|
||||
|
||||
|
||||
def ImpulseWaveTable():
|
||||
return ECGWaveTable(
|
||||
data=np.array([1, *([0] * 124)]),
|
||||
segments=Segments(
|
||||
S=3,
|
||||
S_T=9,
|
||||
T=17,
|
||||
T_P=66,
|
||||
P=87,
|
||||
P_R=119,
|
||||
Q=122,
|
||||
),
|
||||
top=1,
|
||||
bottom=0,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
samples = np.tile(FastTachycardiaWaveTable().data, 3)
|
||||
|
||||
plt.plot(range(len(samples)), samples)
|
||||
plt.show()
|
||||
|
||||
163
src/pojagi_dsp/channel/ecg/generator/wavetable/synthesizer.py
Normal file
163
src/pojagi_dsp/channel/ecg/generator/wavetable/synthesizer.py
Normal file
@@ -0,0 +1,163 @@
|
||||
import numpy as np
|
||||
from pojagi_dsp.channel.ecg.generator import AECGSynthesizer
|
||||
from pojagi_dsp.channel.ecg.generator.wavetable.wavetable import (
|
||||
ECGWaveTable,
|
||||
)
|
||||
|
||||
|
||||
class ECGWaveTableSynthesizer(AECGSynthesizer):
|
||||
def __init__(
|
||||
self,
|
||||
/,
|
||||
tables: dict[tuple[float, float], ECGWaveTable],
|
||||
heart_rate: int,
|
||||
srate: float | None = None,
|
||||
):
|
||||
super().__init__(heart_rate, srate)
|
||||
self.inc: float = 0.0
|
||||
self.tables = tables
|
||||
self.table: ECGWaveTable | None = None
|
||||
self.phase: float = 0.0
|
||||
|
||||
self.brady_start: int = 0
|
||||
self.brady_end: int = 0
|
||||
self.brady_inc: float = 0.0
|
||||
|
||||
self.tachy_start: int = 0
|
||||
self.tachy_end: int = 0
|
||||
self.tachy_inc: float = 0.0
|
||||
|
||||
def samples(self):
|
||||
inc: float = None
|
||||
idx: int = 0
|
||||
heart_rate = self.heart_rate
|
||||
|
||||
self._calibrate()
|
||||
|
||||
while idx < self.wavelength:
|
||||
phase = self.phase
|
||||
floor = np.floor(phase)
|
||||
|
||||
yield self.table.linear_interpolation(
|
||||
phase, floor=floor
|
||||
)
|
||||
|
||||
if heart_rate < 60 and (
|
||||
self.brady_start <= phase < self.brady_end
|
||||
):
|
||||
inc = self.brady_inc
|
||||
if phase + inc > self.brady_end:
|
||||
inc = self.brady_end - phase
|
||||
elif heart_rate > 60 and (
|
||||
self.tachy_start <= phase < self.tachy_end
|
||||
):
|
||||
# FIXME: this might only good below a certain `heart_rate`
|
||||
# threshold, because at some high frequency, even the QRS
|
||||
# complex will not have enough room to complete.
|
||||
inc = self.tachy_inc
|
||||
if phase + inc > self.tachy_end:
|
||||
inc = self.tachy_end - phase
|
||||
else:
|
||||
inc = None
|
||||
|
||||
phase += inc if inc is not None else self.inc
|
||||
if phase > len(self.table):
|
||||
phase = 0.0
|
||||
|
||||
self.phase = phase
|
||||
idx += 1
|
||||
|
||||
@AECGSynthesizer.heart_rate.setter
|
||||
def heart_rate(self, val):
|
||||
AECGSynthesizer.heart_rate.fset(self, val)
|
||||
print("setter", hex(id(self)))
|
||||
|
||||
def _calibrate(self):
|
||||
heart_rate = self.heart_rate
|
||||
|
||||
table_matches = {
|
||||
k: v
|
||||
for k, v in self.tables.items()
|
||||
if k[0] <= heart_rate < k[1]
|
||||
}
|
||||
|
||||
if not table_matches:
|
||||
raise ValueError(
|
||||
f"No table found corresponding to heart rate: {heart_rate}."
|
||||
)
|
||||
|
||||
# Since we may have more than two tables that match, we loop
|
||||
# through all the matches, applying them in key order.
|
||||
keys = iter(sorted(table_matches))
|
||||
key = next(keys)
|
||||
table = table_matches[key]
|
||||
|
||||
for next_key in keys:
|
||||
next_table = table_matches[next_key]
|
||||
|
||||
if next_key[1] < key[1]:
|
||||
# `next_key` is fully contained within `key`
|
||||
floor, ceiling = next_key
|
||||
next_weight = (heart_rate - floor) / (
|
||||
ceiling - floor
|
||||
)
|
||||
weight = 1 - next_weight
|
||||
|
||||
if (heart_rate - floor) > (
|
||||
(ceiling - floor) / 2
|
||||
):
|
||||
# Weights form an "X" shape; i.e., crossfade to 50%
|
||||
# and back.
|
||||
weight, next_weight = next_weight, weight
|
||||
else:
|
||||
floor = next_key[
|
||||
0
|
||||
] # i.e., the bottom of the top
|
||||
ceiling = key[1] # i.e., the top of the bottom
|
||||
next_weight = (heart_rate - floor) / (
|
||||
ceiling - floor
|
||||
)
|
||||
|
||||
table = table.merge(next_table, next_weight)
|
||||
key = next_key
|
||||
|
||||
self.table = table
|
||||
|
||||
# ECG Tables are designed for 1Hz, and as a default, we don't want to
|
||||
# stretch anything; hence, no reference to `self.heart_rate` here,
|
||||
# instead constant 60:
|
||||
self.inc = len(self.table) / (self.srate * (60 / 60))
|
||||
|
||||
self.brady_start, self.brady_end = (
|
||||
getattr(self.table.segments, x)
|
||||
for x in self.table.brady_stretch
|
||||
)
|
||||
if self.table.brady_stretch == "R":
|
||||
self.brady_end == len(self.table) - 1
|
||||
|
||||
# Stretch only the T_P segment to compensate, rather than
|
||||
# stretching the whole wave.
|
||||
table_segment_length = self.brady_end - self.brady_start
|
||||
self.brady_inc = self.stretch_inc(table_segment_length)
|
||||
|
||||
self.tachy_start, self.tachy_end = (
|
||||
getattr(self.table.segments, x)
|
||||
for x in self.table.tachy_compress
|
||||
)
|
||||
if self.table.tachy_compress[1] == "R":
|
||||
self.tachy_end = len(self.table) - 1
|
||||
|
||||
# Preserve QRS-J-point; compress Jp-Q to compensate.
|
||||
table_segment_length = self.tachy_end - self.tachy_start
|
||||
self.tachy_inc = self.stretch_inc(table_segment_length)
|
||||
|
||||
def stretch_inc(self, table_segment_length: int) -> float:
|
||||
# Get the missing samples by subtracting the number of samples
|
||||
# contributed by the 1Hz table default, minus the segment we
|
||||
# want to stretch.
|
||||
tmp_wavelength = (
|
||||
self.wavelength
|
||||
- (len(self.table) - table_segment_length) / self.inc
|
||||
)
|
||||
|
||||
return table_segment_length / tmp_wavelength
|
||||
182
src/pojagi_dsp/channel/ecg/generator/wavetable/wavetable.py
Normal file
182
src/pojagi_dsp/channel/ecg/generator/wavetable/wavetable.py
Normal file
@@ -0,0 +1,182 @@
|
||||
import dataclasses
|
||||
from numbers import Number
|
||||
|
||||
import numpy as np
|
||||
from scipy.interpolate import CubicSpline
|
||||
|
||||
from pojagi_dsp.channel.ecg import Segments
|
||||
|
||||
|
||||
class ECGWaveTable:
|
||||
"""
|
||||
This type of wavetable is designed around the P and R. By
|
||||
convention, R will always be equal to 1, and the baseline (P) will always
|
||||
be 0. (That doesn't mean, however, that the other values can't cross these
|
||||
boundaries. E.g., Q and S are often negative.)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
/,
|
||||
data: list[Number],
|
||||
segments: Segments,
|
||||
brady_stretch: tuple[str, str] | None = None,
|
||||
tachy_compress: tuple[str, str] | None = None,
|
||||
bottom: Number | None = None,
|
||||
top: Number | None = None,
|
||||
table_length: int = (1 << 10) * 2,
|
||||
):
|
||||
"""
|
||||
Initialize an ECGWaveTable.
|
||||
|
||||
Args:
|
||||
data (List[Number]): The raw waveform data points for one cardiac cycle.
|
||||
segments (Segments): Segment indices (e.g., P, Q, R, S, T) marking key features in the waveform.
|
||||
brady_stretch (tuple[str, str] | None): Segment interval to stretch for bradycardia (slow heart rate).
|
||||
tachy_compress (tuple[str, str] | None): Segment interval to compress for tachycardia (fast heart rate).
|
||||
bottom (Optional[Number]): Value to use as the baseline (P segment) for normalization. If None, uses data[segments.P].
|
||||
top (Optional[Number]): Value to use as the peak (R segment) for normalization. If None, uses data[segments.R].
|
||||
table_length (int): Number of samples in the expanded wavetable (default: 2048).
|
||||
"""
|
||||
|
||||
if len(data) == table_length:
|
||||
self.data = np.array(data)
|
||||
else:
|
||||
# We generate a larger table for use with linear interpolation,
|
||||
# trading time (CPU) for memory (table size).
|
||||
#
|
||||
# Here we use cubic spline interpolation instead of linear for
|
||||
# wavetable construction, since it usually only happens once at
|
||||
# startup, and should provide a much better quality table from
|
||||
# limited data, making it possible to work with small, manually
|
||||
# composed tables that we JIT convert to the larger table.
|
||||
### FIXME: use the sinc function instead:
|
||||
### f(x) = sin(x)/x where x =/= 0 and f(x) = 1 if x = 0
|
||||
### you have to apply this scaled to each sample in the table and
|
||||
### then add all of the resulting signals together.
|
||||
### I think this is the same as summing the dft of each impulse
|
||||
### as if the impulse is a member of a larger table.
|
||||
cs = CubicSpline(
|
||||
range(len(data)),
|
||||
data,
|
||||
bc_type="natural",
|
||||
)
|
||||
|
||||
self.data = np.array(
|
||||
[
|
||||
cs(x)
|
||||
for x in np.linspace(
|
||||
0, len(data), table_length
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
# Scale the declared segments to the table_length
|
||||
self.segments = Segments(
|
||||
**{
|
||||
k: (
|
||||
int(v / (len(data) / table_length))
|
||||
if v
|
||||
else v
|
||||
)
|
||||
for k, v in (
|
||||
(f.name, getattr(segments, f.name))
|
||||
for f in dataclasses.fields(segments)
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
# NOTE: these are not the data min/max, but the normal min/max, either
|
||||
# provided as kwargs, or derived from P and R segment starts, by
|
||||
# convention.
|
||||
bottom = (
|
||||
bottom if bottom is not None else data[segments.P]
|
||||
)
|
||||
top = top if top is not None else data[segments.R]
|
||||
|
||||
if not (0 == bottom and 1 == top):
|
||||
# Normalize between 0 and 1:
|
||||
self.data = (self.data - bottom) / (top - bottom)
|
||||
|
||||
self.brady_stretch = (
|
||||
brady_stretch
|
||||
if brady_stretch is not None
|
||||
else ("S_T", "P")
|
||||
)
|
||||
|
||||
self.tachy_compress = (
|
||||
tachy_compress
|
||||
if tachy_compress is not None
|
||||
else ("S_T", "Q")
|
||||
)
|
||||
|
||||
def __getitem__(self, k):
|
||||
return self.data[k]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data) # O(1)
|
||||
|
||||
def linear_interpolation(
|
||||
self,
|
||||
index: float,
|
||||
floor: Number | None = None,
|
||||
ceiling: Number | None = None,
|
||||
) -> float:
|
||||
"""
|
||||
Returns a smoothly interpolated value from the wavetable at a fractional index.
|
||||
|
||||
Instead of returning discrete values (which can cause aliasing and a "chunky" waveform),
|
||||
this method linearly interpolates between the nearest lower (floor) and upper (ceiling)
|
||||
indices, weighted by their distance from the requested index. This improves waveform
|
||||
smoothness and reduces artifacts when sampling at arbitrary positions.
|
||||
|
||||
Args:
|
||||
index (float): The fractional index to sample.
|
||||
floor (Optional[Number]): Override for the lower index (default: floor of index).
|
||||
ceiling (Optional[Number]): Override for the upper index (default: floor + 1).
|
||||
|
||||
Returns:
|
||||
float: The interpolated value at the given index.
|
||||
"""
|
||||
dl = len(self.data)
|
||||
floor = (
|
||||
floor if floor is not None else np.floor(index) % dl
|
||||
)
|
||||
ceiling = (
|
||||
ceiling if ceiling is not None else (floor + 1) % dl
|
||||
)
|
||||
|
||||
# e.g., a. 124.75 - 124 == 0.75
|
||||
# b. 123 - 123 == 0 (no weight goes to ceiling)
|
||||
ceiling_weight = index - floor
|
||||
# e.g., a. 1 - 0.75 == 0.25
|
||||
# b. 1 - 0 == 1 (all weight goes to floor)
|
||||
floor_weight = 1 - ceiling_weight
|
||||
|
||||
return (
|
||||
self[int(floor)] * floor_weight
|
||||
+ self[int(ceiling)] * ceiling_weight
|
||||
)
|
||||
|
||||
def merge(
|
||||
self,
|
||||
other: "ECGWaveTable",
|
||||
weight: float,
|
||||
):
|
||||
self_weight = 1 - weight
|
||||
return ECGWaveTable(
|
||||
data=(self.data * self_weight + other.data * weight),
|
||||
segments=self.segments.merge(other.segments, weight),
|
||||
brady_stretch=(
|
||||
other.brady_stretch
|
||||
if self_weight < 0.5
|
||||
else self.brady_stretch
|
||||
),
|
||||
tachy_compress=(
|
||||
other.tachy_compress
|
||||
if self_weight < 0.5
|
||||
else self.tachy_compress
|
||||
),
|
||||
top=1,
|
||||
bottom=0,
|
||||
)
|
||||
37
src/pojagi_dsp/channel/filter/envelope.py
Normal file
37
src/pojagi_dsp/channel/filter/envelope.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from typing import Optional
|
||||
from pojagi_dsp.channel import Filter
|
||||
|
||||
|
||||
class Envelope(Filter[float]):
|
||||
def __init__(
|
||||
self,
|
||||
checkpoints: list[tuple[int, float]],
|
||||
*,
|
||||
srate=None,
|
||||
reader=None,
|
||||
):
|
||||
super().__init__(reader, srate)
|
||||
self.checkpoints = sorted(checkpoints)
|
||||
|
||||
def samples(self):
|
||||
checkpoints = self.checkpoints
|
||||
idx = 0
|
||||
try:
|
||||
n = 0
|
||||
while True:
|
||||
# Find current segment
|
||||
while idx + 1 < len(checkpoints) and n >= checkpoints[idx + 1][0]:
|
||||
idx += 1
|
||||
|
||||
if idx + 1 < len(checkpoints):
|
||||
start, dest = checkpoints[idx]
|
||||
end, end_dest = checkpoints[idx + 1]
|
||||
t = (n - start) / (end - start) if end > start else 0.0
|
||||
value = dest + (end_dest - dest) * t
|
||||
else:
|
||||
value = checkpoints[-1][1]
|
||||
yield next(self.reader.stream()) * value
|
||||
n += 1
|
||||
except StopIteration:
|
||||
...
|
||||
|
||||
@@ -12,14 +12,15 @@ class SineWave(ASignal[float]):
|
||||
self,
|
||||
hz: float,
|
||||
phase: float = 0.0, # radians
|
||||
srate: Optional[float] = None
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self.hz = hz
|
||||
self.phase = phase
|
||||
|
||||
@property
|
||||
def wavelength(self): return self.srate/self.hz
|
||||
def wavelength(self):
|
||||
return self.srate / self.hz
|
||||
|
||||
def samples(self):
|
||||
"""An iterator over one period."""
|
||||
@@ -27,7 +28,7 @@ class SineWave(ASignal[float]):
|
||||
self.phase %= _2_PI
|
||||
|
||||
while self.phase < _2_PI:
|
||||
inc = (_2_PI * self.hz)/self.srate
|
||||
inc = (_2_PI * self.hz) / self.srate
|
||||
yield math.sin(self.phase)
|
||||
self.phase += inc
|
||||
|
||||
@@ -44,7 +45,9 @@ if __name__ == "__main__":
|
||||
# for _ in range(10):
|
||||
# values += list(sine)
|
||||
|
||||
for y in sine.of_duration(datetime.timedelta(milliseconds=10)):
|
||||
for y in sine.of_duration(
|
||||
datetime.timedelta(milliseconds=10)
|
||||
):
|
||||
values.append(y)
|
||||
|
||||
plt.plot(range(len(values)), values)
|
||||
|
||||
361
src/pojagi_dsp/channel/signal.py
Normal file
361
src/pojagi_dsp/channel/signal.py
Normal file
@@ -0,0 +1,361 @@
|
||||
import abc
|
||||
import copy
|
||||
import datetime
|
||||
import inspect
|
||||
import logging
|
||||
import math
|
||||
import operator
|
||||
import types
|
||||
from collections.abc import Iterable
|
||||
from functools import reduce
|
||||
from itertools import islice
|
||||
from typing import Any, Callable, Generic, Iterator, Optional, Type, TypeVar, Union
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
class IllegalStateException(ValueError): ...
|
||||
|
||||
|
||||
def coerce_channels(x: Any) -> Iterator["ASignal"]:
|
||||
if isinstance(x, ASignal):
|
||||
yield x
|
||||
else:
|
||||
if callable(x):
|
||||
if isinstance(x, Type):
|
||||
yield x()
|
||||
else:
|
||||
yield SignalFunction(x)
|
||||
elif isinstance(x, Iterable): # and not isinstance(x, str):
|
||||
for it in (coerce_channels(y) for y in x):
|
||||
for channel in it:
|
||||
yield channel
|
||||
else:
|
||||
yield Constantly(x)
|
||||
|
||||
|
||||
class ASignalMeta(abc.ABCMeta):
|
||||
def __or__(self, other: Any) -> "Filter":
|
||||
"""
|
||||
Allows `|` composition starting from an uninitialized class.
|
||||
See doc for `__or__` below in `ASignal`.
|
||||
"""
|
||||
return self() | coerce_channels(other)
|
||||
|
||||
def __radd__(self, other):
|
||||
return self() + other
|
||||
|
||||
def __add__(self, other):
|
||||
return self() + other
|
||||
|
||||
def __rmul__(self, other):
|
||||
return self() * other
|
||||
|
||||
def __mul__(self, other):
|
||||
return self() * other
|
||||
|
||||
|
||||
class ASignal(Generic[T], metaclass=ASignalMeta):
|
||||
def __init__(self, srate: Optional[float] = None):
|
||||
self._srate = srate
|
||||
self._cursor: Optional[Iterator[T]] = None
|
||||
|
||||
@property
|
||||
def srate(self):
|
||||
if self._srate is None:
|
||||
raise IllegalStateException(f"{self.__class__}: `srate` is None.")
|
||||
return self._srate
|
||||
|
||||
@srate.setter
|
||||
def srate(self, val: float):
|
||||
self._srate = val
|
||||
|
||||
def __iter__(self):
|
||||
self._cursor = self.samples()
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
return next(self.cursor)
|
||||
|
||||
@abc.abstractmethod
|
||||
def samples(self) -> Iterator[T]: ...
|
||||
|
||||
@property
|
||||
def cursor(self):
|
||||
"""
|
||||
An `Iterator` representing the current pipeline in progress.
|
||||
"""
|
||||
if self._cursor is None:
|
||||
# this can only happen once
|
||||
self._cursor = self.samples()
|
||||
return self._cursor
|
||||
|
||||
def __getstate__(self):
|
||||
"""
|
||||
`_cursor` is a generator, and generators aren't picklable.
|
||||
"""
|
||||
state = self.__dict__.copy()
|
||||
if state.get("_cursor"):
|
||||
del state["_cursor"]
|
||||
return state
|
||||
|
||||
def stream(self):
|
||||
while True:
|
||||
try:
|
||||
yield next(self.cursor)
|
||||
except StopIteration:
|
||||
self = iter(self)
|
||||
|
||||
def of_duration(self, duration: datetime.timedelta):
|
||||
"""
|
||||
Returns an `Iterator` of samples for a particular duration expressed
|
||||
as a `datetime.timedelta`
|
||||
:param:`duration` - `datetime.timedelta` representing the duration
|
||||
"""
|
||||
return islice(
|
||||
self.stream(),
|
||||
0,
|
||||
math.floor(self.srate * duration.total_seconds()),
|
||||
)
|
||||
|
||||
def __or__(
|
||||
left,
|
||||
right: Union["Filter", Callable, Iterable],
|
||||
) -> "Filter":
|
||||
"""
|
||||
Allows composition of filter pipelines with `|` operator.
|
||||
|
||||
e.g.,
|
||||
```
|
||||
myFooGenerator
|
||||
| BarFilter
|
||||
| baz_filter_func
|
||||
| (lambda reader: (x for x in reader))
|
||||
```
|
||||
"""
|
||||
if isinstance(right, SignalFunction):
|
||||
return left | FilterFunction(fn=right._fn, name=right.Function)
|
||||
|
||||
if not isinstance(right, ASignal):
|
||||
return reduce(operator.or_, (left, *coerce_channels(right)))
|
||||
|
||||
if not isinstance(right, Filter):
|
||||
raise ValueError(
|
||||
f"Right side must be a `{Filter.__name__}`; "
|
||||
f"received: {type(right)}",
|
||||
)
|
||||
|
||||
filter: Filter = right
|
||||
while getattr(filter, "_reader", None) is not None:
|
||||
# Assuming this is a filter pipeline, we want the last node's
|
||||
# reader to be whatever's on the left side of this operation.
|
||||
filter = filter.reader
|
||||
|
||||
if hasattr(filter, "_reader"):
|
||||
# We hit the "bottom" and found a filter.
|
||||
filter.reader = left
|
||||
else:
|
||||
# We hit the "bottom" and found a non-filter/generator.
|
||||
raise ValueError(
|
||||
f"{right.__class__.__name__}: filter pipeline already has a "
|
||||
"generator."
|
||||
)
|
||||
|
||||
# Will often be `None` unless `left` is a generator.
|
||||
right.srate = left._srate
|
||||
|
||||
return right
|
||||
|
||||
def __radd__(right, left):
|
||||
return right.__add__(left)
|
||||
|
||||
def __add__(left, right):
|
||||
return left._operator_impl(operator.add, right)
|
||||
|
||||
def __rmul__(right, left):
|
||||
return right.__mul__(left)
|
||||
|
||||
def __mul__(left, right):
|
||||
return left._operator_impl(operator.mul, right)
|
||||
|
||||
# FIXME: other operators? Also, shouldn't `*` mean convolve instead?
|
||||
|
||||
def _operator_impl(left, operator: Callable[..., T], right: Any):
|
||||
channels = list(coerce_channels(right))
|
||||
for channel in channels:
|
||||
if channel._srate is None:
|
||||
channel.srate = left._srate
|
||||
return Reduce(operator, left, *channels, srate=left._srate)
|
||||
|
||||
def __repr__(self):
|
||||
members = {}
|
||||
for k in [
|
||||
k
|
||||
for k in dir(self)
|
||||
if not k.startswith("_")
|
||||
and not k
|
||||
in {
|
||||
"stream",
|
||||
"reader",
|
||||
"cursor",
|
||||
"wave",
|
||||
}
|
||||
]:
|
||||
try:
|
||||
v = getattr(self, k)
|
||||
if not inspect.isroutine(v):
|
||||
members[k] = v
|
||||
except IllegalStateException as e:
|
||||
members[k] = None
|
||||
|
||||
return (
|
||||
f"{self.__class__.__name__}"
|
||||
f"""({
|
||||
f", ".join(
|
||||
f"{k}={v}"
|
||||
for k, v in members.items()
|
||||
)
|
||||
})"""
|
||||
)
|
||||
|
||||
|
||||
S = TypeVar("S", bound=ASignal)
|
||||
|
||||
|
||||
class Reduce(ASignal, Generic[S, T]):
|
||||
def __init__(
|
||||
self,
|
||||
# FIXME: typing https://stackoverflow.com/a/67814270
|
||||
fn: Callable[..., T],
|
||||
*streams: S,
|
||||
srate: Optional[float] = None,
|
||||
stateful=True,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self._fn = fn
|
||||
self.fn = fn.__name__
|
||||
self.streams = []
|
||||
for stream in streams:
|
||||
if stateful:
|
||||
self.streams.append(stream)
|
||||
continue
|
||||
|
||||
stream_ = (
|
||||
copy.deepcopy(stream)
|
||||
if not isinstance(stream, types.GeneratorType)
|
||||
else stream
|
||||
)
|
||||
stream_.srate = srate
|
||||
self.streams.append(stream_)
|
||||
|
||||
@property
|
||||
def srate(self):
|
||||
return ASignal.srate.fget(self)
|
||||
|
||||
@srate.setter
|
||||
def srate(self, val: float):
|
||||
ASignal.srate.fset(self, val)
|
||||
for stream in self.streams:
|
||||
if isinstance(stream, ASignal):
|
||||
stream.srate = val
|
||||
|
||||
def samples(self):
|
||||
return (reduce(self._fn, args) for args in zip(*self.streams))
|
||||
|
||||
|
||||
class Filter(ASignal, Generic[S]):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reader: Optional[S] = None,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self.reader: Optional[S] = reader
|
||||
|
||||
@property
|
||||
def reader(self) -> S:
|
||||
"""
|
||||
The input stream this filter reads.
|
||||
"""
|
||||
if not self._reader:
|
||||
raise IllegalStateException(f"{self.__class__}: `reader` is None.")
|
||||
return self._reader
|
||||
|
||||
@reader.setter
|
||||
def reader(self, val: S):
|
||||
self._reader = val
|
||||
if val is not None and self._srate is None:
|
||||
self.srate = val._srate
|
||||
|
||||
@property
|
||||
def srate(self):
|
||||
return ASignal.srate.fget(self)
|
||||
|
||||
@srate.setter
|
||||
def srate(self, val: float):
|
||||
ASignal.srate.fset(self, val)
|
||||
child = getattr(self, "_reader", None)
|
||||
previous_srate = val
|
||||
while child is not None:
|
||||
# Since `srate` is optional at initialization, but required in
|
||||
# general, we make our best attempt to normalize it for the
|
||||
# filter pipeline, which should be consistent for most
|
||||
# applications, by applying it to all children.
|
||||
if child._srate is None:
|
||||
child.srate = previous_srate
|
||||
child: Optional[ASignal] = getattr(child, "_reader", None)
|
||||
if isinstance(child, ASignal) and child._srate is not None:
|
||||
previous_srate = child._srate
|
||||
|
||||
def samples(self) -> Iterator[T]:
|
||||
"""The below is a default implementation, but this is meant to be
|
||||
overrided.
|
||||
"""
|
||||
return self.reader.samples()
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self._reader} | {super().__repr__()}"
|
||||
|
||||
|
||||
class FilterFunction(Filter, Generic[T, S]):
|
||||
def __init__(
|
||||
self,
|
||||
fn: Callable[[S], Iterator[T]],
|
||||
name: Optional[str] = None,
|
||||
reader: Optional[S] = None,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(reader, srate)
|
||||
self._fn = fn
|
||||
self.Function = name if name else fn.__name__
|
||||
|
||||
def samples(self):
|
||||
return self._fn(self.reader)
|
||||
|
||||
|
||||
class SignalFunction(ASignal, Generic[T]):
|
||||
def __init__(
|
||||
self,
|
||||
fn: Callable[[int], Iterator[T]],
|
||||
name: Optional[str] = None,
|
||||
srate: Optional[float] = None,
|
||||
):
|
||||
super().__init__(srate)
|
||||
self._fn = fn
|
||||
self.Function = name if name else fn.__name__
|
||||
|
||||
def samples(self) -> Iterator[T]:
|
||||
return self._fn(self.srate)
|
||||
|
||||
|
||||
class Constantly(ASignal, Generic[T]):
|
||||
def __init__(self, constant: T, srate: float = 0.0):
|
||||
super().__init__(srate)
|
||||
self.constant = constant
|
||||
|
||||
def samples(self) -> Iterator[T]:
|
||||
while True:
|
||||
yield self.constant
|
||||
@@ -1,295 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
from typing import Iterator, List, Literal, Optional, Type, Union
|
||||
|
||||
from physiq_cloud.series_frame import fb_builder
|
||||
from physiq_cloud.series_frame.fb_wrapper import FlatBufferWrapper
|
||||
from physiq_cloud.time import Instant, TimeUnit
|
||||
from physiqfb.SeriesFrame import SeriesFrame
|
||||
from physiqfb.SeriesFrameHolderList import SeriesFrameHolderList
|
||||
from pydantic import BaseModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SamplingSetInfo(BaseModel):
|
||||
id: int
|
||||
alias: str
|
||||
timestamped: bool
|
||||
# FIXME: not in the INFO.yaml, but isn't this just the `frame_size_micros`
|
||||
# divided by the number of values in the channel data? We could either get
|
||||
# it from the first frame, or look it up in the API/repo.
|
||||
# frequency: int
|
||||
|
||||
|
||||
class SftInfo(BaseModel):
|
||||
alias: Optional[str]
|
||||
frame_size_micros: int
|
||||
max_frame_size_bytes: int
|
||||
sampling_sets: List[SamplingSetInfo]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SeriesFramePackage:
|
||||
frame: FlatBufferWrapper[SeriesFrame]
|
||||
sft_info: SftInfo
|
||||
|
||||
def relative_instant(self, offset=0):
|
||||
return Instant.from_unix(
|
||||
TimeUnit.MICROSECONDS,
|
||||
(self.frame.fb.FrameId() + offset)
|
||||
* self.sft_info.frame_size_micros,
|
||||
)
|
||||
|
||||
@property
|
||||
def start(self):
|
||||
return self.relative_instant(0)
|
||||
|
||||
@property
|
||||
def end(self):
|
||||
return self.relative_instant(1)
|
||||
|
||||
|
||||
class ASeriesFrameEmitter(ABC):
|
||||
"""
|
||||
Abstract class defining the characteristics of a series frame emitter,
|
||||
which is designed to be subclassed by all generators and filters.
|
||||
|
||||
A "generator" is a type of emitter that produces frames from "nothing";
|
||||
i.e., by some external process, such as reading a file, an API, etc.; or
|
||||
by generating frames algorithmically.
|
||||
|
||||
A "filter" is any emitter that takes another emitter and affects its
|
||||
:meth:`frames` in some arbitrary way. This terminology is borrowed from
|
||||
the digital signal processing domain, and doesn't imply that the signal
|
||||
will be reduced or shortened, etc. In fact the signal coming from the
|
||||
injected emitter might be lengthened or amplified by a filter to any
|
||||
extent, including the maximum or infinity, etc.
|
||||
|
||||
This class defines an abstract property called `frames` that should
|
||||
trigger the pipeline to begin and return an `Iterator` of
|
||||
:class:`SeriesFramePackage`.
|
||||
|
||||
These emitters are designed to be chained together with filters. E.g., a
|
||||
typical scenario would be to start with some generator, and chain it
|
||||
together with one or more filters:
|
||||
|
||||
```
|
||||
my_generator = SomeGenerator()
|
||||
my_first_filter = SomeFilter(reader=my_generator)
|
||||
my_second_filter = SomeOtherFilter(reader=my_first_filter)
|
||||
for frames in my_second_filter.frames: ...
|
||||
```
|
||||
|
||||
Alternatively, the `__or__` method has been overloaded so that you can
|
||||
also do something equivalent to the above like this:
|
||||
|
||||
```
|
||||
for frame in (
|
||||
SomeGenerator()
|
||||
| SomeFilter
|
||||
| SomeOtherFilter
|
||||
): ...
|
||||
```
|
||||
|
||||
NOTE: Accessing `frames` may trigger side effects; it starts a chain of
|
||||
calls to the reader accessors in the pipeline, which restarts the pipeline
|
||||
anew each time. Use :meth:`cursor` to access the existing `Iterator` if
|
||||
you need multiple accesses.
|
||||
|
||||
i.e., calling
|
||||
```
|
||||
next(reader.cursor)
|
||||
```
|
||||
is different than
|
||||
```
|
||||
next(reader.frames())
|
||||
```
|
||||
or
|
||||
```
|
||||
next(reader.stream())
|
||||
```
|
||||
in that calling `stream` is like making a database query (that returns and
|
||||
caches a cursor), and `cursor` is just providing access to the cached
|
||||
cursor, while calling `frames` directly provides an Iterator without
|
||||
caching a cursor.
|
||||
|
||||
That said, :meth:`cursor` is empty until :meth:`stream` is called for the
|
||||
first time. (It requires the initial "query" that :meth:`frames` provides.)
|
||||
"""
|
||||
|
||||
def __init__(self, sft_info: Optional[SftInfo] = None) -> None:
|
||||
"""
|
||||
:param:`sft_info` - an :class:`SftInfo` describing the series frame
|
||||
type this emitter emits.
|
||||
"""
|
||||
super().__init__()
|
||||
self._sft_info = sft_info
|
||||
|
||||
@property
|
||||
def sft_info(self):
|
||||
if not self._sft_info:
|
||||
raise RuntimeError(
|
||||
"Illegal state: `_sft_info` is None."
|
||||
)
|
||||
return self._sft_info
|
||||
|
||||
@sft_info.setter
|
||||
def sft_info(self, val):
|
||||
self._sft_info = val
|
||||
|
||||
def __iter__(self): return self.stream()
|
||||
|
||||
@abstractmethod
|
||||
def frames(self) -> Iterator[SeriesFramePackage]: ...
|
||||
|
||||
@property
|
||||
def cursor(self):
|
||||
"""
|
||||
An `Iterator` representing the current pipeline in progress.
|
||||
"""
|
||||
return self._cursor
|
||||
|
||||
def stream(self):
|
||||
"""
|
||||
Start the pipeline and return an :class:`Iterator` of
|
||||
:class:`SeriesFramePackage`.
|
||||
|
||||
Each time :meth:`frames` is accessed, a new `Iterator` is instantiated by
|
||||
accessing the `reader`'s `frames`, which may trigger side effects. It
|
||||
will also start the process pipeline over, so if you need to iterate
|
||||
over the frames with multiple calls within a subclass of this, you should
|
||||
use :meth:`cursor` instead, which returns the same object returned from this
|
||||
method, without restarting the pipeline.
|
||||
"""
|
||||
self._cursor = self.frames()
|
||||
return self.cursor
|
||||
|
||||
def __or__(
|
||||
self,
|
||||
right: Union["SeriesFrameFilter", Type["SeriesFrameFilter"]],
|
||||
) -> "SeriesFrameFilter":
|
||||
if callable(right):
|
||||
right = right()
|
||||
|
||||
right.reader = self
|
||||
right.sft_info = self.sft_info
|
||||
return right
|
||||
|
||||
def sfhls(
|
||||
self,
|
||||
max_bytelen: int,
|
||||
) -> Iterator[FlatBufferWrapper[SeriesFrameHolderList]]:
|
||||
"""
|
||||
Repackage input frames as a series frame holder list (sfhl) iterator.
|
||||
:param:`max_bytelen` - the max byte length allowed per sfhl.
|
||||
"""
|
||||
chunk = list()
|
||||
chunk_bytelen = 0
|
||||
|
||||
for pkg in self.frames():
|
||||
if chunk_bytelen + len(pkg.frame.bytes) > max_bytelen:
|
||||
if not chunk:
|
||||
break
|
||||
yield sfhl_from_frames(chunk)
|
||||
chunk_bytelen = chruncate_frames(chunk)
|
||||
|
||||
chunk_bytelen += append_frame(chunk, pkg.frame)
|
||||
|
||||
if chunk:
|
||||
yield sfhl_from_frames(chunk)
|
||||
chunk_bytelen = chruncate_frames(chunk)
|
||||
|
||||
|
||||
class SeriesFrameFilter(ASeriesFrameEmitter):
|
||||
"""
|
||||
Class defining the characteristics of a filter, which is a kind of emitter.
|
||||
|
||||
The difference between a filter and an emitter is:
|
||||
|
||||
1. an emitter doesn't know how to provide `frames` (no concrete
|
||||
implementation)
|
||||
2. a filter assumes it will read `frames` from another injected emitter
|
||||
(called a `reader`), and by default simply returns those `frames`
|
||||
unadulterated.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reader: Optional[ASeriesFrameEmitter] = None,
|
||||
**kwargs
|
||||
) -> None:
|
||||
"""
|
||||
:param:`reader` - input stream this filter reads.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._reader = reader
|
||||
self._cursor: Iterator[SeriesFramePackage] = iter(())
|
||||
|
||||
@property
|
||||
def reader(self) -> ASeriesFrameEmitter:
|
||||
"""
|
||||
The input stream this filter reads.
|
||||
"""
|
||||
if self._reader is None:
|
||||
raise RuntimeError("Illegal state: `reader` is None.")
|
||||
return self._reader
|
||||
|
||||
@reader.setter
|
||||
def reader(self, val):
|
||||
self._reader = val
|
||||
|
||||
def frames(self):
|
||||
"""
|
||||
This has to exist because it's subclassing an abstract class that
|
||||
declares it, but a concrete implementation of this would be confusing.
|
||||
Generally speaking, implementations should read the `self.reader` and
|
||||
do something to modify the frames.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def sfhl_from_frames(
|
||||
frames: Iterator[FlatBufferWrapper[SeriesFrame]]
|
||||
) -> FlatBufferWrapper[SeriesFrameHolderList]:
|
||||
builder = fb_builder.Builder(0)
|
||||
builder.Finish(
|
||||
fb_builder.CreateSeriesFrameHolderList(
|
||||
builder=builder,
|
||||
frames=[
|
||||
fb_builder.CreateSeriesFrameHolder(
|
||||
builder=builder,
|
||||
data=frame.bytes,
|
||||
)
|
||||
for frame in frames
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
return FlatBufferWrapper(
|
||||
_bytes=builder.Output(),
|
||||
schema=SeriesFrameHolderList,
|
||||
)
|
||||
|
||||
|
||||
def append_frame(
|
||||
chunk: List[FlatBufferWrapper[SeriesFrame]],
|
||||
frame: FlatBufferWrapper[SeriesFrame],
|
||||
) -> int:
|
||||
"""
|
||||
Appends a frame to the given chunk and returns the bytelen it appended.
|
||||
"""
|
||||
chunk.append(frame)
|
||||
return len(frame.bytes)
|
||||
|
||||
|
||||
def chruncate_frames(
|
||||
chunk: List[FlatBufferWrapper[SeriesFrame]],
|
||||
) -> Literal[0]:
|
||||
"""
|
||||
"Truncates" a "chunk" of frames to zero. Returns bytelen (constantly `0`)
|
||||
to be consistent with :func:`append_frame`.
|
||||
"""
|
||||
chunk.clear()
|
||||
return 0
|
||||
@@ -1,106 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import yaml
|
||||
from physiq_cloud.time import Instant, Interval, TimeUnit
|
||||
from pydantic import BaseModel, validator
|
||||
|
||||
from pojagi_dsp.series_frame import SftInfo
|
||||
from pojagi_dsp.series_frame.generator.sampler import SftInterval
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ExcerptType(BaseModel):
|
||||
series_frame_type: str # vci-vitalpatch-telemetry
|
||||
sft_interval: Optional[SftInterval]
|
||||
|
||||
|
||||
class Excerpt(BaseModel):
|
||||
account: str # uuid4
|
||||
id: str # patient1
|
||||
interval: Interval # "iso/iso"
|
||||
organization: str # "maps"
|
||||
source_id: str # "maps.physiq.io"
|
||||
types: List[ExcerptType]
|
||||
|
||||
@validator("interval", pre=True)
|
||||
def timespan_to_interval(cls, timespan: str): return Interval(
|
||||
**{
|
||||
["start", "end_exclusive"][idx]: Instant.parse_iso8601(stamp)
|
||||
for idx, stamp in enumerate(timespan.split("/"))
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class ExtBundleConfig(BaseModel):
|
||||
excerpts: List[Excerpt]
|
||||
id: str # clinical-event-trigger
|
||||
type: str = "PhysIQCloud"
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class BundleConfig:
|
||||
excerpts: Dict[str, Excerpt]
|
||||
id: str
|
||||
|
||||
@staticmethod
|
||||
def create(bundle_dir: Path) -> "BundleConfig":
|
||||
yaml_files = (x.resolve() for x in bundle_dir.glob("**/*.yaml"))
|
||||
|
||||
try:
|
||||
# the first yaml you encounter is BUNDLE_CONFIG.yaml
|
||||
ext_bundle_config = ExtBundleConfig.parse_obj(
|
||||
yaml.safe_load(next(yaml_files).read_text())
|
||||
)
|
||||
except StopIteration as si:
|
||||
raise RuntimeError(
|
||||
f"No yaml files found under \"{bundle_dir}\"."
|
||||
) from si
|
||||
|
||||
# the rest are INFO.yaml files
|
||||
info_files = list(yaml_files)
|
||||
|
||||
for excerpt in ext_bundle_config.excerpts:
|
||||
logger.debug(f"Loading excerpt \"{excerpt.id}\".")
|
||||
|
||||
for type_ in excerpt.types:
|
||||
logger.debug(f"Loading SFT \"{type_.series_frame_type}\".")
|
||||
# Make sure the info file belongs to this excerpt
|
||||
INFO = next(
|
||||
x for x in info_files
|
||||
if x.as_posix()
|
||||
.split("/")[-3]
|
||||
.startswith(excerpt.id)
|
||||
if x.as_posix()
|
||||
.split("/")[-2]
|
||||
.startswith(type_.series_frame_type)
|
||||
)
|
||||
|
||||
sft_info = SftInfo.parse_obj(
|
||||
yaml.safe_load(INFO.read_text())
|
||||
)
|
||||
|
||||
sft_info.alias = type_.series_frame_type
|
||||
|
||||
type_.sft_interval = SftInterval(
|
||||
info=sft_info,
|
||||
interval=excerpt.interval,
|
||||
frame_count=(
|
||||
excerpt.interval
|
||||
.to_duration()
|
||||
.to_unix(TimeUnit.MICROSECONDS)
|
||||
// sft_info.frame_size_micros
|
||||
),
|
||||
files=sorted(INFO.parent.glob("**/*.sfhl")),
|
||||
)
|
||||
|
||||
return BundleConfig(
|
||||
id=ext_bundle_config.id,
|
||||
excerpts={
|
||||
x.id: x
|
||||
for x in ext_bundle_config.excerpts
|
||||
},
|
||||
)
|
||||
@@ -1,40 +0,0 @@
|
||||
import logging
|
||||
import math
|
||||
from typing import Iterator, Union
|
||||
|
||||
from pojagi_dsp.series_frame import (SeriesFrameFilter,
|
||||
SeriesFramePackage)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Looping(SeriesFrameFilter):
|
||||
"""
|
||||
Filter that loops through the input reader's frames until it reaches
|
||||
the given :param:`iterations`
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
iterations: Union[int, float] = math.inf,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
:param:`iterations` - number of times to loop through the `frames`.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self.iterations = iterations
|
||||
self.iteration = 0
|
||||
|
||||
def increment(self) -> None:
|
||||
"""Override to react to `iteration` increment."""
|
||||
self.iteration += 1
|
||||
logger.debug(
|
||||
f"Loop incremented ({self.sft_info.alias}): {self.iteration}"
|
||||
)
|
||||
|
||||
def frames(self) -> Iterator[SeriesFramePackage]:
|
||||
while self.iteration < self.iterations:
|
||||
for pkg in self.reader.frames():
|
||||
yield pkg
|
||||
self.increment()
|
||||
@@ -1,277 +0,0 @@
|
||||
import functools
|
||||
import logging
|
||||
from typing import Any, Iterator, List, Optional
|
||||
|
||||
import flatbuffers
|
||||
import numpy as np
|
||||
from physiq_cloud.series_frame import fb_builder
|
||||
from physiq_cloud.series_frame.fb.math import ceildiv
|
||||
from physiq_cloud.series_frame.fb_to_numpy import from_channel_data
|
||||
from physiq_cloud.series_frame.fb_wrapper import FlatBufferWrapper
|
||||
from physiq_cloud.time import Instant, TimeUnit
|
||||
from physiqfb.ChannelData import ChannelData
|
||||
from physiqfb.ReadingType import ReadingType
|
||||
from physiqfb.SamplingSetData import SamplingSetData
|
||||
from physiqfb.SeriesFrame import SeriesFrame
|
||||
from pydantic import BaseModel
|
||||
|
||||
from pojagi_dsp.series_frame import (
|
||||
ASeriesFrameEmitter,
|
||||
SeriesFrameFilter,
|
||||
SeriesFramePackage,
|
||||
SftInfo,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Synchronize(BaseModel):
|
||||
hour: bool = False
|
||||
minute: bool = False
|
||||
second: bool = False
|
||||
microsecond: bool = False
|
||||
|
||||
|
||||
class Replaying(SeriesFrameFilter):
|
||||
"""
|
||||
Filter that replays input frames starting at a given :class:`Instant`
|
||||
in time.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
emit_start: Instant = Instant.now(),
|
||||
synchronize: Optional[Synchronize] = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
:param:`emit_start` - instant in time to replay the frames.
|
||||
:param:`synchronize` - Whether and at what granularity to synchronize the Instant from the source
|
||||
data with the configured :param:`emit_start`. This will alter the precision of the
|
||||
emit start seconds depending on the level of granularity you choose,
|
||||
possibly drastically.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.frame_idx = 0
|
||||
|
||||
self.emit_start = emit_start
|
||||
self.synchronize = synchronize
|
||||
self._first_frame_id: int | None = None
|
||||
self._start_frame_id_inst: int | None = None
|
||||
|
||||
@ASeriesFrameEmitter.sft_info.setter
|
||||
def sft_info(self, val: SftInfo):
|
||||
"""
|
||||
This override's :class:`ASeriesFrameFilter`'s :meth:`sft_info`
|
||||
setter, so that we can initialize the `timestamped_map` property.
|
||||
"""
|
||||
self._sft_info = val
|
||||
self.timestamped_map = {
|
||||
s.id: s.timestamped for s in self.sft_info.sampling_sets
|
||||
}
|
||||
|
||||
@property
|
||||
def start_frame_id(self):
|
||||
"""
|
||||
:meth:`frames` must be called before accessing this for the first time,
|
||||
because the calculation depends on the first frame.
|
||||
"""
|
||||
if self._start_frame_id_inst is not None:
|
||||
return self._start_frame_id_inst
|
||||
|
||||
if not self.synchronize or not any(v for _, v in self.synchronize):
|
||||
self.synchronized_emit_start = self.emit_start
|
||||
else:
|
||||
emit_start_dt = self.emit_start.to_datetime()
|
||||
source_start_dt = Instant.from_unix(
|
||||
TimeUnit.MICROSECONDS,
|
||||
self._first_frame_id * self.sft_info.frame_size_micros,
|
||||
).to_datetime()
|
||||
|
||||
self.synchronized_emit_start = Instant.from_datetime(
|
||||
emit_start_dt.replace(
|
||||
**{
|
||||
k: getattr(source_start_dt, k)
|
||||
if getattr(self.synchronize, k)
|
||||
else getattr(emit_start_dt, k)
|
||||
for k in ["hour", "minute", "second", "microsecond"]
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
# We use ceildiv to calculate the first frame ID, because normal
|
||||
# division would likely yield a frame BEFORE the emit_start. We want to
|
||||
# start emitting frames at or after emit_start, and ceildiv does that
|
||||
# for us.
|
||||
self._start_frame_id_inst = ceildiv(
|
||||
self.synchronized_emit_start.to_unix(
|
||||
TimeUnit.MICROSECONDS,
|
||||
),
|
||||
self.sft_info.frame_size_micros,
|
||||
)
|
||||
|
||||
return self._start_frame_id_inst
|
||||
|
||||
def replayed_frame(
|
||||
self,
|
||||
source: SeriesFrame,
|
||||
target_frame_id: int,
|
||||
) -> FlatBufferWrapper[SeriesFrame]:
|
||||
builder = flatbuffers.Builder(0)
|
||||
target = fb_builder.CreateSeriesFrame(
|
||||
builder=builder,
|
||||
frame_id=target_frame_id,
|
||||
ingested_at_micros=-1, # source.IngestedAtMicros(),
|
||||
sampling_sets_offsets=[
|
||||
replayed_sampling_set(
|
||||
builder=builder,
|
||||
sampling_set_data=sampling_set_data,
|
||||
source_frame_id=source.FrameId(),
|
||||
target_frame_id=target_frame_id,
|
||||
frame_size_micros=self.sft_info.frame_size_micros,
|
||||
is_timestamped=self.timestamped_map[sampling_set_data.Id()],
|
||||
)
|
||||
for sampling_set_data in [
|
||||
source.SamplingSets(idx)
|
||||
for idx in range(source.SamplingSetsLength())
|
||||
]
|
||||
],
|
||||
submitter_id=-1, # source.SubmitterId(),
|
||||
sensor_id=-1, # source.SensorId(),
|
||||
)
|
||||
builder.Finish(target)
|
||||
target_frame_bytes = builder.Output()
|
||||
|
||||
return FlatBufferWrapper(
|
||||
_bytes=target_frame_bytes,
|
||||
schema=SeriesFrame,
|
||||
)
|
||||
|
||||
def frames(self) -> Iterator[SeriesFramePackage]:
|
||||
"""
|
||||
Each time this property is accessed, it will access the injected
|
||||
reader anew, but continue to increment the `frame_idx` so that
|
||||
the next frame will replay where the last one left off.
|
||||
|
||||
To reset the `frame_idx`, client code can just set the `frame_idx`
|
||||
manually (or create a new instance).
|
||||
"""
|
||||
|
||||
for pkg in self.reader.frames():
|
||||
if self._first_frame_id is None:
|
||||
self._first_frame_id = pkg.frame.fb.FrameId()
|
||||
|
||||
yield SeriesFramePackage(
|
||||
frame=self.replayed_frame(
|
||||
source=pkg.frame.fb,
|
||||
target_frame_id=self.start_frame_id + self.frame_idx,
|
||||
),
|
||||
sft_info=pkg.sft_info,
|
||||
)
|
||||
# `int` in python 3 is unbounded, can continue indefinitely. Also,
|
||||
# the `FrameId` is effectively a timestamp, so continuously
|
||||
# `inc`ing this value is by design.
|
||||
self.frame_idx += 1
|
||||
|
||||
|
||||
def replayed_sampling_set(
|
||||
builder: flatbuffers.Builder,
|
||||
sampling_set_data: SamplingSetData,
|
||||
source_frame_id: int,
|
||||
target_frame_id: int,
|
||||
frame_size_micros: int,
|
||||
is_timestamped: bool,
|
||||
):
|
||||
source_channels = [
|
||||
sampling_set_data.Channels(idx)
|
||||
for idx in range(sampling_set_data.ChannelsLength())
|
||||
]
|
||||
|
||||
target_channels: List[int] = list()
|
||||
for source_channel_data in source_channels:
|
||||
is_timestamp_channel = is_timestamped and source_channel_data.Id() == 0
|
||||
|
||||
if not is_timestamp_channel or (source_frame_id == target_frame_id):
|
||||
# Just copy verbatim
|
||||
target_channel_data = replayed_channel_data(
|
||||
builder,
|
||||
source_channel_data,
|
||||
)
|
||||
else:
|
||||
# Update the timestamps relative to the target frameId
|
||||
source_frame_start_micros = source_frame_id * frame_size_micros
|
||||
target_frame_start_micros = target_frame_id * frame_size_micros
|
||||
|
||||
# np.copy is used because the returned array is read-only
|
||||
timestamps = np.copy(from_channel_data(data=source_channel_data))
|
||||
timestamps -= source_frame_start_micros # relativize
|
||||
timestamps += target_frame_start_micros # frame shift
|
||||
|
||||
target_channel_data = fb_builder.CreateChannelData(
|
||||
builder=builder,
|
||||
id=0, # `source_channel_data.Id()` is constantly 0 here
|
||||
readings_offset=fb_builder.CreateInt64Channel(
|
||||
builder=builder,
|
||||
data=timestamps.tolist(), # List[int]
|
||||
),
|
||||
readings_type=ReadingType.INT64,
|
||||
)
|
||||
|
||||
target_channels.append(target_channel_data)
|
||||
|
||||
np_relative_timestamps = sampling_set_data.RelativeTimestampsAsNumpy()
|
||||
relative_timestamps = (
|
||||
np_relative_timestamps.tobytes()
|
||||
if np_relative_timestamps not in {0, -1} # error conditions/no data
|
||||
else None
|
||||
)
|
||||
|
||||
return fb_builder.CreateSamplingSetData(
|
||||
builder=builder,
|
||||
channel_offsets=target_channels,
|
||||
id=sampling_set_data.Id(),
|
||||
start_offset_micros=sampling_set_data.StartOffsetMicros(),
|
||||
relative_timestamps_type=sampling_set_data.RelativeTimestampsType(),
|
||||
relative_timestamps_unit_in_micros=sampling_set_data.RelativeTimestampsUnitInMicros(),
|
||||
relative_timestamps=relative_timestamps,
|
||||
relative_timestamps_sample_count=sampling_set_data.RelativeTimestampsSampleCount(),
|
||||
)
|
||||
|
||||
|
||||
def replayed_channel_data(
|
||||
builder: flatbuffers.Builder,
|
||||
channel_data: ChannelData,
|
||||
) -> int:
|
||||
readings_type = channel_data.ReadingsType()
|
||||
|
||||
return fb_builder.CreateChannelData(
|
||||
builder=builder,
|
||||
id=channel_data.Id(),
|
||||
readings_offset=channel(
|
||||
builder=builder,
|
||||
readings_type=readings_type,
|
||||
readings=from_channel_data(data=channel_data).tolist(),
|
||||
),
|
||||
readings_type=readings_type,
|
||||
)
|
||||
|
||||
|
||||
reading_type_map = {
|
||||
ReadingType.BINARY32: fb_builder.CreateBinary32Channel,
|
||||
ReadingType.BINARY64: fb_builder.CreateBinary64Channel,
|
||||
ReadingType.INT8: fb_builder.CreateInt8Channel,
|
||||
ReadingType.INT16: fb_builder.CreateInt16Channel,
|
||||
ReadingType.INT32: fb_builder.CreateInt32Channel,
|
||||
ReadingType.INT64: fb_builder.CreateInt64Channel,
|
||||
ReadingType.NAMED_READING: fb_builder.CreateNamedReadingChannel,
|
||||
ReadingType.STRING: fb_builder.CreateStringChannel,
|
||||
}
|
||||
|
||||
|
||||
def channel(
|
||||
builder: flatbuffers.Builder,
|
||||
readings_type: int,
|
||||
readings: List[Any],
|
||||
) -> int:
|
||||
return reading_type_map[readings_type](builder=builder, data=readings)
|
||||
@@ -1,76 +0,0 @@
|
||||
import logging
|
||||
from typing import Callable, Iterator
|
||||
|
||||
from physiq_cloud.time import Duration, Instant, TimeUnit
|
||||
|
||||
from pojagi_dsp.series_frame import SeriesFrameFilter, SeriesFramePackage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Updating(SeriesFrameFilter):
|
||||
"""
|
||||
Filter that outputs frames until it runs out or the next frame would
|
||||
surpass a given :class:`Instant` in time, whichever comes first.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
until: Callable[[], Instant] = Instant.now,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
:param:`until` - closure returning an `Instant` at which to stop
|
||||
iterating when the next frame would surpass it. The cursor will
|
||||
otherwise persist until it has been exhausted.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self.until = until
|
||||
self.last_update_count = 0
|
||||
self._next_pkg = None
|
||||
|
||||
def log_status(filter, end: Instant, until: Instant):
|
||||
between = Duration.between(end, until).to_unix(TimeUnit.MILLISECONDS) / float(
|
||||
1000
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"{filter.sft_info.alias}: Update scope : {between} seconds"
|
||||
if end < until
|
||||
else (
|
||||
f"{filter.sft_info.alias}: "
|
||||
f"Next update available in {-between} seconds"
|
||||
)
|
||||
)
|
||||
|
||||
def frames(self) -> Iterator[SeriesFramePackage]:
|
||||
self.last_update_count = 0
|
||||
|
||||
if self._next_pkg is None:
|
||||
cursor = self.reader.stream()
|
||||
self._next_pkg = next(cursor)
|
||||
else:
|
||||
cursor = self.reader.cursor
|
||||
|
||||
logger.debug(f"{self.sft_info.alias}: {cursor}")
|
||||
|
||||
try:
|
||||
until = self.until()
|
||||
end = self._next_pkg.end
|
||||
|
||||
self.log_status(end, until)
|
||||
|
||||
while end < until:
|
||||
yield self._next_pkg
|
||||
self.last_update_count += 1
|
||||
self._next_pkg = next(cursor)
|
||||
end = self._next_pkg.end
|
||||
except StopIteration:
|
||||
logger.warning("StopIteration caught")
|
||||
logger.warning(f"{self.sft_info.alias}: {cursor}")
|
||||
...
|
||||
|
||||
if self.last_update_count:
|
||||
logger.debug(
|
||||
f"{self.sft_info.alias}: " f"Update frames : {self.last_update_count}"
|
||||
)
|
||||
@@ -1,15 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
from physiq_cloud.time import Interval
|
||||
|
||||
from pojagi_dsp.series_frame import SftInfo
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SftInterval:
|
||||
info: SftInfo
|
||||
interval: Interval
|
||||
frame_count: int
|
||||
files: List[Path]
|
||||
@@ -1,95 +0,0 @@
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Iterator
|
||||
|
||||
from physiq_cloud.series_frame.fb_wrapper import FlatBufferWrapper
|
||||
from physiqfb.SeriesFrame import SeriesFrame
|
||||
from physiqfb.SeriesFrameHolderList import SeriesFrameHolderList
|
||||
|
||||
from pojagi_dsp.series_frame import (ASeriesFrameEmitter,
|
||||
SeriesFramePackage)
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FileSampler(ASeriesFrameEmitter):
|
||||
def __init__(
|
||||
self,
|
||||
*sfhl_files: Path,
|
||||
frame_count: int = math.inf,
|
||||
frame_offset: int = 0,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
:param:`sfhl_files` - One or more files containing sfhl data. It's
|
||||
assumed that the files are sorted and contain contiguous (sorted)
|
||||
data, and no effort is made to validate that or handle any error
|
||||
condition related to correctness. The files are treated as a single
|
||||
logical file, and an `EOFError` is raised if the `frame_count` wants
|
||||
more than the available frames.
|
||||
|
||||
:param:`frame_count` - The number of frames this generator will
|
||||
attempt to read from the given files.
|
||||
|
||||
:param:`frame_offset` - The number of frames to skip over before
|
||||
yielding frames from the given files.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self.files = sfhl_files
|
||||
self.frame_offset = frame_offset
|
||||
self.frame_count = frame_count
|
||||
self.frame_idx = 0
|
||||
|
||||
def frames_from_sfhl_bytes(
|
||||
self, data: bytes,
|
||||
) -> Iterator[FlatBufferWrapper[SeriesFrame]]:
|
||||
"""
|
||||
Emit frames from series frame holder list data.
|
||||
|
||||
:param:`data` - sfhl bytes.
|
||||
"""
|
||||
sfhl = SeriesFrameHolderList.GetRootAsSeriesFrameHolderList(data, 0)
|
||||
for index in range(sfhl.FramesLength()):
|
||||
yield FlatBufferWrapper(
|
||||
_bytes=sfhl.Frames(index).DataAsNumpy().tobytes(),
|
||||
schema=SeriesFrame,
|
||||
)
|
||||
|
||||
def frames(self) -> Iterator[SeriesFramePackage]:
|
||||
self.frame_idx = 0
|
||||
end_frame_idx = self.frame_offset + self.frame_count
|
||||
|
||||
for file in self.files:
|
||||
"""
|
||||
Finite set of files passed in.
|
||||
"""
|
||||
for frame in self.frames_from_sfhl_bytes(file.read_bytes()):
|
||||
"""
|
||||
Finite set of frames from `read_bytes`.
|
||||
"""
|
||||
if self.frame_idx < self.frame_offset:
|
||||
"""
|
||||
Fast-forward to the declared offset, for each file.
|
||||
"""
|
||||
self.frame_idx += 1
|
||||
continue
|
||||
elif self.frame_idx > end_frame_idx:
|
||||
"""
|
||||
`end_frame_idx` is finite.
|
||||
"""
|
||||
break
|
||||
|
||||
yield SeriesFramePackage(frame=frame, sft_info=self.sft_info)
|
||||
self.frame_idx += 1
|
||||
|
||||
if end_frame_idx != math.inf:
|
||||
if self.frame_idx < end_frame_idx:
|
||||
frames_read = self.frame_idx - self.frame_offset
|
||||
raise EOFError(
|
||||
f"Failed to read {self.frame_count - frames_read} frames. "
|
||||
"Not enough data.\n"
|
||||
f"\toffset : {self.frame_offset}\n"
|
||||
f"\tframes read : {frames_read}"
|
||||
)
|
||||
@@ -1,48 +0,0 @@
|
||||
from typing import Iterator
|
||||
|
||||
import flatbuffers
|
||||
from physiq_cloud.series_frame import fb_builder
|
||||
from physiq_cloud.series_frame.fb_wrapper import FlatBufferWrapper
|
||||
from physiq_cloud.time import Instant, TimeUnit
|
||||
from physiqfb import SeriesFrame
|
||||
|
||||
from pojagi_dsp.series_frame import (ASeriesFrameEmitter,
|
||||
SeriesFramePackage)
|
||||
|
||||
|
||||
class VCIVitalPatchTelemetrySynthesizer(ASeriesFrameEmitter):
|
||||
|
||||
def frames(self) -> Iterator[SeriesFramePackage]:
|
||||
builder = flatbuffers.Builder(0)
|
||||
target = fb_builder.CreateSeriesFrame(
|
||||
builder=builder,
|
||||
frame_id=Instant.now().to_unix(
|
||||
TimeUnit.MICROSECONDS,
|
||||
) // self.sft_info.frame_size_micros,
|
||||
ingested_at_micros=-1,
|
||||
sampling_sets_offsets=[
|
||||
# replayed_sampling_set(
|
||||
# builder=builder,
|
||||
# sampling_set_data=sampling_set_data,
|
||||
# source_frame_id=source.FrameId(),
|
||||
# target_frame_id=target_frame_id,
|
||||
# frame_size_micros=self.sft_info.frame_size_micros,
|
||||
# is_timestamped=self.timestamped_map[
|
||||
# sampling_set_data.Id()
|
||||
# ],
|
||||
# )
|
||||
# for sampling_set_data in [
|
||||
# source.SamplingSets(idx)
|
||||
# for idx in range(source.SamplingSetsLength())
|
||||
# ]
|
||||
],
|
||||
submitter_id=-1,
|
||||
sensor_id=-1,
|
||||
)
|
||||
builder.Finish(target)
|
||||
target_frame_bytes = builder.Output()
|
||||
|
||||
return FlatBufferWrapper(
|
||||
_bytes=target_frame_bytes,
|
||||
schema=SeriesFrame,
|
||||
)
|
||||
@@ -1,35 +1,46 @@
|
||||
from copy import deepcopy
|
||||
import math
|
||||
from typing import Iterator
|
||||
import pytest
|
||||
from pojagi_dsp.channel import ASignal, Constantly, Filter, FilterFunction, SignalFunction, IllegalStateError, Map
|
||||
from pojagi_dsp.channel import (
|
||||
ASignal,
|
||||
Constantly,
|
||||
Filter,
|
||||
FilterFunction,
|
||||
SignalFunction,
|
||||
IllegalStateException,
|
||||
Reduce,
|
||||
)
|
||||
from pojagi_dsp.channel.generator.sine import SineWave
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def srate(): return 44100
|
||||
def srate():
|
||||
return 44100
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def freq(): return 440
|
||||
def freq():
|
||||
return 440
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def const(srate): return Constantly(42, srate=srate)
|
||||
def const(srate):
|
||||
return Constantly(42, srate=srate)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sine(srate, freq): return SineWave(freq, srate=srate)
|
||||
def sine(srate, freq):
|
||||
return SineWave(freq, srate=srate)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sine_generator_factory(srate, freq):
|
||||
def sine():
|
||||
phase = 0.0
|
||||
inc = (2 * math.pi * freq)/srate
|
||||
inc = (2 * math.pi * freq) / srate
|
||||
while True:
|
||||
yield math.sin(phase)
|
||||
phase += inc
|
||||
|
||||
return sine
|
||||
|
||||
|
||||
@@ -73,14 +84,14 @@ def test_filter_nested_expression(const: Constantly):
|
||||
|
||||
def test_reader(const: Constantly):
|
||||
filter = Filter()
|
||||
with pytest.raises(IllegalStateError, match=".reader. is None"):
|
||||
with pytest.raises(IllegalStateException, match=".reader. is None"):
|
||||
filter.reader
|
||||
assert (const | filter).reader == const
|
||||
|
||||
|
||||
def test_pipeline_missing_reader(const: ASignal):
|
||||
pipeline = Filter | Filter | Filter
|
||||
with pytest.raises(IllegalStateError, match=".reader. is None"):
|
||||
with pytest.raises(IllegalStateException, match=".reader. is None"):
|
||||
next(pipeline)
|
||||
assert next(const | pipeline)
|
||||
|
||||
@@ -94,13 +105,13 @@ def test_filter_can_only_be_assigned_one_generator(const: Constantly):
|
||||
|
||||
def test_add_tuple(const: Constantly):
|
||||
pipeline = const + (100, 200, 300)
|
||||
assert isinstance(pipeline, Map)
|
||||
assert isinstance(pipeline, Reduce)
|
||||
assert next(pipeline) == const.constant + (100 + 200 + 300)
|
||||
|
||||
|
||||
def test_mul_tuple(const: Constantly):
|
||||
pipeline = const * (100, 200, 300)
|
||||
assert isinstance(pipeline, Map)
|
||||
assert isinstance(pipeline, Reduce)
|
||||
assert next(pipeline) == const.constant * (100 * 200 * 300)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user